A Lunar Backup Record of Humanity
Abstract
:1. Concept
2. Challenges
2.1. Storage Capacity
2.2. Data Transfer Rate
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bostrom, N.; Cirkovic, M.M. Global Catastrophic Risks; Oxford University Press: Oxford, NY, USA, 2011. [Google Scholar]
- Mani, L.; Tzachor, A.; Cole, P. Global catastrophic risk from lower magnitude volcanic eruptions. Nat. Commun. 2021, 12, 4756. [Google Scholar] [CrossRef] [PubMed]
- Westin, U.; Ingdahl, W.; Wariaro, V.; Shandwick, W. Global Catastrophic Risks 2020; Global Challenges Foundation: Stockholm, Sweden, 2020. [Google Scholar]
- Bostrom, N. Analyzing Human Extinction Scenarios and Related Hazards. J. Evol. Technol. 2002, 9. [Google Scholar]
- Bryson, S.; Kunimoto, M.; Kopparapu, R.K.; Coughlin, J.L.; Borucki, W.J.; Koch, D.; Aguirre, V.S.; Allen, C.; Barentsen, G.; Batalha, N.M.; et al. The Occurrence of Rocky Habitable-zone Planets around Solar-like Stars from Kepler Data. Astron. J. 2021, 161, 36. [Google Scholar] [CrossRef]
- Hsu, D.C.; Ford, E.B.; Ragozzine, D.; Ashby, K. Occurrence Rates of Planets Orbiting FGK Stars: Combining Kepler DR25, Gaia DR2, and Bayesian Inference. Astron. J. 2019, 158, 109. [Google Scholar] [CrossRef] [Green Version]
- Seager, S.; Deming, D. Exoplanet Atmospheres. Annu. Rev. Astron. Astrophys. 2010, 48, 631. [Google Scholar] [CrossRef] [Green Version]
- “NASA’s Plan for Sustained Lunar Exploration and Development.” National Aeronautics and Space Administration. 2020. Available online: https://www.nasa.gov/sites/default/files/atoms/files/a_sustained_lunar_presence_nspc_report4220final.pdf (accessed on 8 October 2022).
- Zou, Y.; Xu, L.; Jia, Y. A Tentative Plan of China to Establish a Lunar Research Station in the Next Ten Years. In Proceedings of the 42nd COSPAR Scientific Assembly 42, Pasadena, CA, USA, 14–22 July 2018; Volume 42. [Google Scholar]
- Musk, E. Making Humans a Multi-Planetary Species. New Space 2017, 5, 46–61. [Google Scholar] [CrossRef]
- Schmitt, R.M. Archiving “The Best of Ourselves” on the Voyager Golden Record: Rhetorics of the Frontier, Memory, and Technology. Master’s Thesis, University of Colorado at Boulder, Boulder, CO, USA, 2017. [Google Scholar]
- Traphagan, J.W. Should We Lie to Extraterrestrials? A Critique of the Voyager Golden Records. Space Policy 2021, 57, 101440. [Google Scholar] [CrossRef]
- Westengen, O.T.; Jeppson, S.; Guarino, L. Global Ex-Situ Crop Diversity Conservation and the Svalbard Global Seed Vault: Assessing the Current Status. PLoS ONE 2013, 8, e64146. [Google Scholar] [CrossRef] [Green Version]
- Guzman, M.; Hein, A.M.; Welch, C. Extremely Long-Duration Storage Concepts for Space. Acta Astronaut. 2016, 130, 128–136. [Google Scholar] [CrossRef]
- Turchin, A.; Denkenberger, D. Surviving global risks through the preservation of humanity’s data on the Moon. Acta Astronaut. 2018, 146, 161–170. [Google Scholar] [CrossRef]
- IDC. Worldwide Global DataSphere Forecast, 2021–2025: The World Keeps Creating More Data—Now, What Do We Do with It All? Technical Report #US46410421; IDC: Needham, MA, USA, 2021. [Google Scholar]
- Reinsel, D.; Gantz, J.; Rydning, J. The Digitization of the World from Edge to Core; IDC White Paper #US44413318; Seagate: Fremont, CA, USA, 2018. [Google Scholar]
- IDC. Worldwide Global StorageSphere Forecast, 2021–2025: To Save or Not to Save Data, That Is the Question; Technical Report #US47509621; IDC: Needham, MA, USA, 2021. [Google Scholar]
- Hilbert, M.; López, P. The World’s Technological Capacity to Store, Communicate, and Compute Information. Science 2011, 332, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.; Watkinson, A.; Mabe, M. The STM Report: An Overview of Scientific and Scholarly Publishing; International Association of Scientific, Technical and Medical Publishers: The Hague, The Netherlands, 2018. [Google Scholar]
- Mora, C.; Tittensor, D.P.; Adl, S.; Simpson, A.G.B.; Worm, B. How Many Species Are There on Earth and in the Ocean? PLoS Biol. 2011, 9, e1001127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venter, J.C.; Adams, M.D.; Myers, E.W.; Li, P.W.; Mural, R.J.; Sutton, G.G.; Smith, H.O.; Yandell, M.; Evans, C.A.; Holt, R.A.; et al. The Sequence of the Human Genome. Science 2001, 291, 1304–1351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaisler, S.; Armour, F.; Espinosa, J.A.; Money, W. Big Data: Issues and Challenges Moving Forward. In Proceedings of the 2013 46th Hawaii International Conference on System Sciences, Maui, HI, USA, 7–10 January 2013; pp. 995–1004. [Google Scholar] [CrossRef]
- Huang, H.; Guo, S.; Wang, K. Envisioned Wireless Big Data Storage for Low-Earth-Orbit Satellite-Based Cloud. IEEE Wirel. Commun. 2018, 25, 26–31. [Google Scholar] [CrossRef]
- Toyoshima, M.; Takayama, Y.; Takahashi, T.; Suzuki, K.; Kimura, S.; Takizawa, K.; Kuri, T.; Klaus, W.; Toyoda, M.; Kunimori, H.; et al. Ground-to-satellite laser communication experiments. IEEE Aerosp. Electron. Syst. Mag. 2008, 23, 10–18. [Google Scholar] [CrossRef]
- Majumdar, A.K. Free-space laser communication performance in the atmospheric channel. J. Opt. Fiber Commun. Rep. 2005, 2, 345–396. [Google Scholar] [CrossRef]
- Majumdar, A.K. Introduction. In Free-Space Laser Communications: Principles and Advances; Majumdar, A.K., Ricklin, J.C., Eds.; Optical and Fiber Communications Reports; Springer: New York, NY, USA, 2008; pp. 1–8. [Google Scholar] [CrossRef]
- Boroson, D.M.; Robinson, B.S.; Murphy, D.V.; Burianek, D.A.; Khatri, F.; Kovalik, J.M.; Sodnik, Z.; Cornwell, D.M. Overview and results of the Lunar Laser Communication Demonstration. In Proceedings of the Free-Space Laser Communication and Atmospheric Propagation XXVI, San Francisco, CA, USA, 1–6 February 2014; Volume 8971, pp. 213–223. [Google Scholar] [CrossRef]
- DeVoe, C.E.; Pillsbury, A.D.; Khatri, F.; Burnside, J.M.; Raudenbush, A.C.; Petrilli, L.J.; Williams, T. Optical overview and qualification of the LLCD space terminal. In Proceedings of the International Conference on Space Optics—ICSO, Tenerife, Canary Islands, Spain, 7–10 October 2014; SPIE: Bellingham, WA, USA, 2017; Volume 10563, pp. 115–123. [Google Scholar] [CrossRef] [Green Version]
- Dmytryszyn, M.; Crook, M.; Sands, T. Lasers for Satellite Uplinks and Downlinks. Sci 2021, 3, 4. [Google Scholar] [CrossRef]
- Seas, A.A.; Robinson, B.; Shih, T.; Khatri, F.; Brumfield, M. Optical Communications Systems for NASA’s Human Space Flight Missions. In Proceedings of the International Conference on Space Optics—ICSO 2018, Chania, Greece, 9–12 October 2018. [Google Scholar]
- Xu, C.; Liu, X.; Wei, X. Differential phase-shift keying for high spectral efficiency optical transmissions. IEEE J. Sel. Top. Quantum Electron. 2004, 10, 281–293. [Google Scholar] [CrossRef]
- Toyoshima, M. Recent Trends in Space Laser Communications for Small Satellites and Constellations. J. Light. Technol. 2021, 39, 693–699. [Google Scholar] [CrossRef]
- Toyoshima, M.; Fuse, T.; Kolev, D.R.; Takenaka, H.; Munemasa, Y.; Iwakiri, N.; Suzuki, K.; Koyama, Y.; Kubooka, T.; Akioka, M.; et al. Current status of research and development on space laser communications technologies and future plans in NICT. In Proceedings of the 2015 IEEE International Conference on Space Optical Systems and Applications (ICSOS), New Orleans, LA, USA, 26–28 October 2015; pp. 1–5. [Google Scholar] [CrossRef]
- Gottlieb, J. Space Colonization and Existential Risk. J. Am. Philos. Assoc. 2019, 5, 306–320. [Google Scholar] [CrossRef] [Green Version]
- Beckstead, N. How much could refuges help us recover from a global catastrophe? Futures 2015, 72, 36–44. [Google Scholar] [CrossRef]
Category | Quantity | Stored Data (Bytes) | Data Rate (Bytes/yr) |
---|---|---|---|
Books | |||
Journal Articles | |||
Films | |||
Genetic Information | N/A | N/A | |
Earth Imagery | N/A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ezell, C.; Lazarian, A.; Loeb, A. A Lunar Backup Record of Humanity. Signals 2022, 3, 823-829. https://doi.org/10.3390/signals3040049
Ezell C, Lazarian A, Loeb A. A Lunar Backup Record of Humanity. Signals. 2022; 3(4):823-829. https://doi.org/10.3390/signals3040049
Chicago/Turabian StyleEzell, Carson, Alexandre Lazarian, and Abraham Loeb. 2022. "A Lunar Backup Record of Humanity" Signals 3, no. 4: 823-829. https://doi.org/10.3390/signals3040049
APA StyleEzell, C., Lazarian, A., & Loeb, A. (2022). A Lunar Backup Record of Humanity. Signals, 3(4), 823-829. https://doi.org/10.3390/signals3040049