Numerical Study of the Drying of Cassava Roots Chips Using an Indirect Solar Dryer in Natural Convection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Solar Dryer
2.2. Thermophysical Properties of Cassava Roots Used
2.3. Heat Mass Transfer on the Products
2.3.1. Roots of Cassava
2.3.2. Drying Chamber
2.3.3. Solar Collector
Glass Cover in Solar Collector
2.3.4. Heat and Mass Transfer Coefficients
2.4. Method of Resolution
3. Results and Discussion
3.1. Model Validation in Yamoussoukro (Ivory Coast)
3.2. Heat Mass Transfer Coefficients, Heat Mass Gradients and Drying Kinetic in Yaoundé (Cameroon)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
A | area (m2) |
C, G, Co, Go | parameters of desorption isotherms (-) |
Cp | specific heat capacity (J/kg·K) |
mass diffusion coefficient of the vapor in drying air (m2/s) | |
DH | mass diffusion coefficient (m2/s) |
dH | hydraulic diameter (m) |
parameter of the mass diffusion coefficient (m2/s) | |
DT | thermal diffusion coefficient (m2/s) |
Ea | energy of activation (J/mol) |
eb | the thickness of the wooden insulation in the solar collection (m) |
epc | the thickness of the absorber in the solar collector (m) |
the thickness of the airflow in the solar collector (m) | |
Fa-b | geometrical factor between the areas (a) and (b) (-) |
g | the intensity of the presenter (9.81 m2/s) |
Gr | Grashof number (-) |
H | moisture content of the cassava (kg/kg, db) |
hc | convective heat transfer coefficient (W/m2.K) |
hm | convective mass transfer coefficient (m/s) |
hr | radiative heat transfer coefficient (W/m2.K) |
IG | global solar irradiation received on the solar dryer (W/m2) |
width of the airflow in the solar collector (m) | |
m | mass (kg) |
mo | dry mass of cassava (kg) |
mass rate of the drying air (kg/s) | |
Nu | Nusselt number (-) |
Sh | Sherwood number (-) |
P | pressure (Pa) |
Pr | Prandtl number (-) |
R | perfect gases universal constant (8.314 J/K·mol) |
Ra | Rayleigh number (-) |
RH | relative humidity of drying air (%/100) |
Sur | area of the walls of the drying chamber (m2) |
T | temperature (K) |
t | drying time (s) |
global heat transfer coefficient in the bottom of the solar collector (W/m2.K) | |
volume of the drying chamber (m3) | |
x | axis coordinates in the thickness direction of the sample (m) |
X | moisture content of cassava at equilibrium state (kg/kg, db) |
moisture content of the first layer when T = 0 K | |
moisture of bound water extracted per kelvin of temperature (kg/kg.K) | |
humidity of the drying air (kg/kg) | |
z | axis coordinates of the solar collector (m) |
zo | altitude (m) |
, | the energy needed to dry a mole of bound water (J/mol) |
Greek Symbols | |
thermal conductivity (W/(m. K)) | |
density (kg/m3) | |
dynamic viscosity of drying air (Pa·s) | |
kinematic viscosity of the drying air (m2/s) | |
Stephan Boltzmann coefficient (5.67 × 10−8) | |
the angle between the solar collector and the horizontal plane (°) | |
solar absorptivity coefficient of component i (-) | |
solar transmissivity coefficient of component i (-) | |
solar reflexivity coefficient of the absorber (-) | |
solar emissivity coefficient of component i (-) | |
Subscripts | |
a | drying air in the drying chamber or solar collector |
aE, E, ext | ambient (exterior space of the solar drying) |
air | air |
atm | atmosphere |
cas | cassava |
ep | surface |
eq | equilibrium |
f | airflow in the solar collector |
fs | end position of the solar collector when z = zmax (outlet point) |
g | gas (air) |
gc, g | glass cover |
i | the interior of the dryer |
La | lateral part |
m | the first layer of bound water |
pc | absorber in the solar collector |
r | roof |
sk | sky |
v | vapor |
vsat | vapor in saturation state |
w | wall |
Index | |
i,j | order of discretization scheme (-) |
Appendix A. Thermophysical Parameters of the Drying Air
Appendix B. Non-Dimensional Numbers
References
- Ndukwu, M.C.; Akani, O.A.; Simonyan, K.J. Nigeria’s grain resource structure, and government sustainable policy: A review. Agric. Eng. Int. CIGR J. 2015, 17, 441–457. [Google Scholar]
- Simo-Tagne, M.; Ndukwu, M.C.; Zoulalian, A.; Bennamoun, L.; Kifani-Sahban, F.; Rogaume, Y. Numerical analysis and validation of a natural convection mix-mode solar dryer for drying red chilli under variable conditions. Renew. Energy 2020, 151, 659–673. [Google Scholar] [CrossRef]
- Ndukwu, M.C.; Manuwa, S.I. Impact of evaporative cooling preservation on the shelf life of fruits and vegetable in South-Western Nigeria. Res. Agric. Eng. 2015, 61, 122–128. [Google Scholar] [CrossRef] [Green Version]
- Ndukwu, M.C.; Asoegwu, S.N.; Ahaneku, I.E. Status of research on agricultural machinery development in Nigeria: A case study of cassava tuber processing machineries. Agric. Mech. Asia Afr. Latin Am. 2018, 49, 150–155. [Google Scholar]
- Ndukwu, M.C.; Onyenwigwe, D. Development of a motorized parboiled cassava tuber shredding machine. Niger. J. Technol. 2013, 32, 1–6. [Google Scholar]
- Egbeocha, C.C.; Asoegwu, S.N.; Okereke, N.A.A. A Review on performance of cassava, peeling machines in Nigeria. Futo J. Ser. 2016, 2, 140–168. [Google Scholar]
- Igboayaka, E.C.; Ndukwu, M.C.; Ernest, I.C. A Modelling approach for determining the throughput capacity and energy consumption of a cassava tuber shredder. J. Chin. Adv. Mater. Soc. 2018, 6, 801–816. [Google Scholar] [CrossRef]
- Ndukwu, M.C.; Afam, G.; Nwakuba, N.R. Development and optimization of a manual fed cassava root chipper for household cassava processors. Turk. J. Agric. Eng. Res. (TURKAGER) 2020, 1, 283–295. [Google Scholar] [CrossRef]
- Ndukwu, M.C.; Ogunlowo, A.S.; Olukunle, O.J. Cocoa bean (Theobroma Cacao L.) drying kinetics. Chil. J. Agric. Res. 2010, 70, 633–639. [Google Scholar]
- Sharma, A.; Chen, C.R.; Vu Lan, N. Solar-energy drying systems: A review. Renew. Sustain. Energy Rev. 2009, 13, 1185–1210. [Google Scholar] [CrossRef]
- Ndukwu, M.C.; Bennamoun, L. Potential of integrating Na2SO4.10H2O pellets in solar drying system. Dry. Technol. 2018, 36, 1017–1030. [Google Scholar] [CrossRef]
- Anyanwu, C.N.; Oparaku, O.U.; Onyegegbu, S.O.; Egwuatu, U.; Edem, N.I.; Egbuka, K.; Nwosu, P.N.; Sharma, V.K. Experimental investigation of a photo voltaic-powered solar cassava dryer. Dry. Technol. 2012, 30, 398–403. [Google Scholar] [CrossRef]
- Simo-Tagne, M. Simple solar dryers adapted to the social, climatic and economic context can help increase the value of tropical timber. ITTO Trop. For. Update 2018, 27, 25–27. [Google Scholar]
- Ndukwu, M.C.; Diemuodeke, E.O.; Abam, F.I.; Abada, U.C.; Eke-emezie, N.; Simo-Tagne, M. Development and modelling of heat and mass transfer analysis of a low-cost solar dryer integrated with biomass heater: Application for West African Region. Sci. Afr. 2020, 10, e00615. [Google Scholar] [CrossRef]
- Ndukwu, M.C.; Simo-Tagne, M.; Bennamoun, L. Solar drying research of medicinal and aromatic plants: An African experience with assessment of the economic and environmental impact. Afr. J. Sci. Technol. Innov. Dev. 2020, 1–14. [Google Scholar] [CrossRef]
- Cadyventures. Available online: https://www.cadyventures.com/product/organic-dried-cassava-chips/ (accessed on 14 February 2021).
- Istockphoto. Available online: https://www.istockphoto.com/fr/search/2/image?excludenudity=false&phrase=cassava%20roots (accessed on 14 February 2021).
- Pirasteh, G.; Saidur, R.; Rahman, S.M.A.; Rahim, N.A. A review on development of solar drying applications. Renew. Sustain. Energy Rev. 2014, 31, 133–148. [Google Scholar] [CrossRef]
- Fudholi, A.; Sopian, K.; Bakhtyar, B.; Gabbasa, M.; Othman, M.Y.; Ruslan, M.H. Review of solar drying systems with air-based solar collectors in Malaysia. Renew. Sustain. Energy Rev. 2015, 51, 1191–1204. [Google Scholar] [CrossRef]
- Hossain, M.Z.; Alam, M.M.; Hossain, M.F.; Sarker, M.S. Performance evaluation of a cabinet solar dryer for drying red pepper in Bangladesh. J. Agric. Eng. 2018, 774, 100–109. [Google Scholar] [CrossRef]
- Ren, H.; Ma, Z.; Lin, W.; Fan, W.; Li, W. Integrating photovoltaic thermal collectors and thermal energy storage systems using phase change materials with rotary desiccant cooling systems. Sustain. Cities Soc. 2018, 36, 131–143. [Google Scholar] [CrossRef] [Green Version]
- Amer, B.M.A.; Gottschalk, K.; Hossain, M.A. Integrated hybrid solar drying system and its drying kinetics of chamomile. Renew. Energy 2018, 121, 539–547. [Google Scholar] [CrossRef]
- Nwakuba, N.R.; Ndukwu, M.C.; Asonye, G.U.; Asoegwu, S.N.; Nwandikom, G.I. Environmental sustainability analysis of a hybrid heat source dryer. Polytechnica 2020, 9–114. [Google Scholar] [CrossRef]
- Simo-Tagne, M.; Ndukwu, M.C.; Ndi-Azese, M. Experimental modelling of a solar dryer for wood fuel in Epinal (France). Modelling 2020, 1, 39–52. [Google Scholar] [CrossRef]
- Ndukwu, M.C.; Bennamoun, L.; Abam, F.I. Experience of solar drying in Africa: Presentation of designs, operations, and models. Food Eng. Rev. 2018, 10, 211–244. [Google Scholar] [CrossRef]
- Bennamoun, L. Reviewing the experience of solar drying in Algeria with presentation of the different design aspects of solar dryers. Renew. Sustain. Energy Rev. 2011, 15, 3371–3379. [Google Scholar] [CrossRef]
- Chaudhari, A.D.; Salve, S.P. A review of solar dryer technologies. Int. J. Res. Advent Technol. 2014, 2, 218–232. [Google Scholar]
- Bahnasawy, A.H.; Shenana, M.E. Mathematical model of direct sun and solar drying of some fermented dairy products (Kishk). J. Food Eng. 2004, 61, 309–319. [Google Scholar] [CrossRef]
- Bennamoun, L.; Belhamri, A. Numerical simulation of drying under variable external conditions: Application to solar drying of seedless grapes. J. Food Eng. 2006, 76, 179–187. [Google Scholar] [CrossRef]
- Bala, B.K.; Woods, J.L. Simulation of the indirect natural convection solar drying of rough rice. Sol. Energy 1994, 53, 259–266. [Google Scholar] [CrossRef]
- Ayadi, M.; Zouari, I.; Bellagi, A. Simulation, and performance of a solar drying unit with storage for aromatic and medicinal plants. Int. J. Food Eng. 2015, 11, 597–607. [Google Scholar] [CrossRef]
- Lamrani, B.; Khouya, A.; Draoui, A. Energy and environmental analysis of an indirect hybrid solar dryer of wood using TRNSYS software. Sol. Energy 2019, 183, 132–145. [Google Scholar] [CrossRef]
- Bentayeb, F.; Bekkioui, N.; Zeghmati, B. Modeling and simulation of a wood solar dryer in a Moroccan climate. Renew. Energy 2008, 33, 501–506. [Google Scholar] [CrossRef]
- Simo-Tagne, M.; Bonoma, B.; Bennamoun, L.; Monkam, L.; Leonard, A.; Zoulalian, A.; Rogaume, Y. Modeling of coupled heat and mass transfer during drying of ebony wood using indirect natural convection solar dryer. Dry. Technol. 2019, 37, 1863–1878. [Google Scholar] [CrossRef]
- Simo-Tagne, M.; Bennamoun, L.; Léonard, A.; Rogaume, Y. Modeling, numerical simulation and validation of a convective dryer in steady conditions: Case study of tropical woods. Int. J. Model. Simul. 2020, 40, 143–161. [Google Scholar] [CrossRef]
- Tieu, Z.A.; Gbaha, P.; Diby, K.A. Étude expérimentale d’un grenier séchoir solaire à convection naturelle: Application au séchage du cacao et du manioc. Afr. Sci. 2019, 15, 80–95. [Google Scholar]
- Simo-Tagne, M.; Zoulalian, A.; Rogaume, Y.; Rémond, R.; Bonoma, B. Modélisation des isothermes de sorption, caractérisation des propriétés thermodynamiques et détermination des humidités d’équilibre d’usage des bois tropicaux. Rev. Energies Renouvelables 2016, 19, 79–96. [Google Scholar]
- Ajala, A.S.; Ngoddy, P.O.; Olajide, J.O. Sorption isotherms and their fitted equations for dried chips of cassava roots (Manihot Esculenta Crantz; Tme-7 variety) and the resulting isosteric heats of sorption. Food Res. 2020, 4, 703–711. [Google Scholar] [CrossRef]
- Baharuddin, N.H.; Mohamed, M.; Abdullah, M.M.A.B.; Muhammad, N.; Rahman, R.; Omar, M.N.; Amini, M.H.M.; Razab, M.K.A.A.; Rizman, Z.I. Potential of cassava root as a raw material for biocomposite development. ARPN J. Eng. Appl. Sci. 2016, 11, 6138–6147. [Google Scholar]
- Fernando, W.J.N.; Low, H.C.; Ahmad, A.L. The effect of infrared on diffusion coefficients and activation energies in convective drying: A case study for banana, cassava and pumpkin. J. Appl. Sci. 2011, 11, 3635–3639. [Google Scholar] [CrossRef] [Green Version]
- Ajala, A.S.; Aboiye, A.O.; Popoola, J.O.; Adeyanju, J.A. Drying characteristics and mathematical modelling of cassava chips. Chem. Process Eng. Res. 2012, 4, 1–9. [Google Scholar]
- Kuitche, A.; Edoun, M.; Takamte, G. Influence of pre-treatment on drying on the drying kinetic of a local okra (Hibiscus ersculentus) variety. World J. Dairy Food Sci. 2007, 2, 83–88. [Google Scholar]
- Simo-Tagne, M.; Zoulalian, A.; Rémond, R.; Rogaume, Y. Mathematical modelling and numerical simulation of a simple solar dryer for tropical wood using a collector. Appl. Therm. Eng. 2018, 131, 356–369. [Google Scholar] [CrossRef]
- Incropera, F.P.; Dewitt, D.P.; Bergman, T.L.; Lavine, A.S. Fundamentals of Heat and Mass Transfer; John Wiley and Sons: Hoboken, NJ, USA, 2007; 1070p. [Google Scholar]
- Bower, S.M.; Saylor, J.R. A study of the Sherwood–Rayleigh relation for water undergoing natural convection-driven evaporation. Int. J. Heat Mass Transf. 2009, 52, 3055–3063. [Google Scholar] [CrossRef]
- Njomo, D. Modelling the heat exchanges in a solar air heater with a cover partially transparent to infrared radiation. Energy Convers. Manag. 1991, 31, 495–503. [Google Scholar] [CrossRef]
- Simo-Tagne, M.; Zoulalian, A.; Remond, R.; Rogaume, Y.; Bonoma, B. Modeling and simulation of an industrial indirect solar dryer for iroko wood (Chlorophora excelsa) in a tropical environnement. Maderas Cienc. Tecnol. 2017, 19, 95–112. [Google Scholar] [CrossRef]
- Meteonorm. Available online: http://www.meteonorm.com/ (accessed on 24 June 2019).
- Simo-Tagne, M.; Rogaume, Y.; Zoulalian, A. Modeling and simulation of the drying of the beech timber (Fagus sylvatica) using oscillating regimes. Int. J. Therm. Environ. Eng. 2014, 8, 83–90. [Google Scholar]
Components | Areas (m2) | Density (kg/m3) | Mass (kg) |
---|---|---|---|
Drying chamber | |||
Roof | 1.550 | 2720 | 5.16 |
Wall | 0.824 | 450 | 3.709 |
Cassava roots chips | 1.473 | 840 (dry) | |
Air drying | 0.2386 (volume in m3) | ||
Solar collector | |||
Glass cover | 1.200 | 2530 | 8.36 |
Absorber | 1.200 | 2720 | 5.64 |
Wooden insulation | 1.200 | 450 | 5.4 |
Airflow | 0.6 × 0.04 (section) |
Parameters | Cassava Roots |
---|---|
(kg/kg) | 0.20444366 |
(kg/(kg.K)) | −0.00034997 |
(-) | 0.1809885 |
(J/mol) | 1917.2676 |
(-) | 6632.002 |
(J/mol) | −11,219.687 |
Components | Specific Heat Capacity (J/(kg·K)) | Thermal Conductivity (W/(m. K)) | Absorptivity Coefficient (-) | Transmitivity Coefficient (-) |
---|---|---|---|---|
For the drying chamber | ||||
Roof | 900 | 190 | 0.91 | 0 |
Wall | 1600 | 0.13 | 0.4 | 0 |
Cassava roots chips | See Equation (2) | See Equation (3) | (-) | (-) |
Air drying | See Equations (A2) and (A3) | See Equation (A1) | (-) | (-) |
For the solar collector | ||||
Glass cover | 800 | 0.1311 | 0.1 | 0.89 |
Absorber | 900 | 190 | 0.91 | 0 |
Wooden insulation | 1236 | 0.14 | (-) | (-) |
Airflow | See Equations (A2) and (A3) | See Equation (A1) | 0.1 | 0.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simo-Tagne, M.; Tagne Tagne, A.; Ndukwu, M.C.; Bennamoun, L.; Obounou Akong, M.B.; El Marouani, M.; Rogaume, Y. Numerical Study of the Drying of Cassava Roots Chips Using an Indirect Solar Dryer in Natural Convection. AgriEngineering 2021, 3, 138-157. https://doi.org/10.3390/agriengineering3010009
Simo-Tagne M, Tagne Tagne A, Ndukwu MC, Bennamoun L, Obounou Akong MB, El Marouani M, Rogaume Y. Numerical Study of the Drying of Cassava Roots Chips Using an Indirect Solar Dryer in Natural Convection. AgriEngineering. 2021; 3(1):138-157. https://doi.org/10.3390/agriengineering3010009
Chicago/Turabian StyleSimo-Tagne, Merlin, Ablain Tagne Tagne, Macmanus Chinenye Ndukwu, Lyes Bennamoun, Marcel Brice Obounou Akong, Maryam El Marouani, and Yann Rogaume. 2021. "Numerical Study of the Drying of Cassava Roots Chips Using an Indirect Solar Dryer in Natural Convection" AgriEngineering 3, no. 1: 138-157. https://doi.org/10.3390/agriengineering3010009
APA StyleSimo-Tagne, M., Tagne Tagne, A., Ndukwu, M. C., Bennamoun, L., Obounou Akong, M. B., El Marouani, M., & Rogaume, Y. (2021). Numerical Study of the Drying of Cassava Roots Chips Using an Indirect Solar Dryer in Natural Convection. AgriEngineering, 3(1), 138-157. https://doi.org/10.3390/agriengineering3010009