Predicting Key Grassland Characteristics from Hyperspectral Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Sensor Rig
2.3. Measurement of Grass Qualities
2.4. Model Generation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations News. Global Perspective Human Stories, World Population to Hit 9.8 Billion by 2050, Despite Nearly Universal Lower Fertility Rates; United Nations: New York, NY, USA, 2017. [Google Scholar]
- Gerland, P.; Raftery, A.E.; Ševčíková, H.; Li, N.; Gu, D.; Spoorenberg, T.; Alkema, L.; Fosdick, B.; Chunn, J.; Lalic, N.; et al. World population stabilization unlikely this century. Science 2014, 346, 234–237. [Google Scholar] [CrossRef] [Green Version]
- Kummu, M.; Guillaume, J.H.A.; De Moel, H.; Eisner, S.; Flörke, M.; Porkka, M.; Siebert, S.; Veldkamp, T.I.E.; Ward, P.J. The world’s road to water scarcity: Shortage and stress in the 20th century and pathways towards sustainability. Sci. Rep. 2016, 6, 38495. [Google Scholar] [CrossRef] [Green Version]
- Kung, L., Jr. Understanding the biology of silage preservation to maximize quality and protect the environment. In Proceedings of the 2010 California Alfalfa & Forage Symposium and Corn/Cereal, Silage Conference, Visalia, CA, USA, 1–2 December 2010; pp. 1–2. [Google Scholar]
- Tan, A.E.; Richards, S.; Sarrabezolles, L.; Platt, I.; Woodhead, I. Proximal soil moisture sensing of dairy pasture. In Proceedings of the 2014 IEEE Conference on Antenna Measurements & Applications (CAMA), Antibes, France, 16–19 November 2014; pp. 1–4. [Google Scholar]
- Irish Farmers Association. Fodder Crisis; Irish Farmers Association: Dublin, Ireland, 2020. [Google Scholar]
- Agriland Farming New Portal. Labour Availability Is Now a Critical Issue within Agri-Food; Agriland: Dublin, Ireland, 2018. [Google Scholar]
- O’Byrne, P.; Jackman, P.; Berry, D.; Penya, H.H.F.; French, M.; Ross, R.J. Multi-spectral visual crop assessment under limited data constraints. In Proceedings of the 2019 Irish Machine Vision and Image Processing Conference, Dublin, Ireland, 28–30 August 2019.
- John Deere. HarvestLab; John Deere: Moline, IL, USA, 2020. [Google Scholar]
- CLAAS. Forage Harvesters—Jaguar; CLAAS: Harsewinkel, Germany, 2020. [Google Scholar]
- YARA. N-Sensor ALS—To Variably Apply Nitrogen; YARA: Oslo, Norway, 2020. [Google Scholar]
- National Aero Space Agency. Share the Science: Reflected Near Infra-Red Waves; NASA: Washington, DC, USA, 2020. [Google Scholar]
- Xue, J.; Su, B. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. J. Sens. 2017, 2017, 1353691. [Google Scholar] [CrossRef] [Green Version]
- Gobba, F. 1616a Main factors influencing occupational solar uv exposure. Dermatol. Radiat. 2018, 75, A86. [Google Scholar] [CrossRef]
- Gitelson, A.; Merzlyak, M.N. Quantitative estimation of chlorophyll-a using reflectance spectra: Experiments with autumn chestnut and maple leaves. J. Photochem. Photobiol. B Biol. 1994, 22, 247–252. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N.; Lichtenthaler, H.K. Detection of Red Edge Position and Chlorophyll Content by Reflectance Measurements Near 700 nm. J. Plant Physiol. 1996, 148, 501–508. [Google Scholar] [CrossRef]
- Schaefer, M.T.; Lamb, D.W. A Combination of Plant NDVI and LiDAR Measurements Improve the Estimation of Pasture Biomass in Tall Fescue (Festuca arundinacea var. Fletcher). Remote. Sens. 2016, 8, 109. [Google Scholar] [CrossRef] [Green Version]
- Trotter, M.G.; Lamb, D.; Donald, G.E.; Schneider, D. Evaluating an active optical sensor for quantifying and mapping green herbage mass and growth in a perennial grass pasture. Crop. Pasture Sci. 2010, 61, 389–398. [Google Scholar] [CrossRef]
- Lamb, D.W.; Schneider, D.A.; Trotter, M.G.; Schaefer, M.T.; Yule, I.J. Extended-altitude, aerial mapping of crop NDVI using an active optical sensor: A case study using a Raptor (TM) sensor over wheat. Comput. Electron. Agric. 2011, 77, 69–73. [Google Scholar] [CrossRef]
- Todd, S.W.; Hoffer, R.M.; Milchunas, D.G. Biomass estimation on grazed and ungrazed rangelands using spectral indices. Int. J. Remote Sens. 1998, 19, 427–438. [Google Scholar] [CrossRef]
- Prabhakara, K.; Hively, W.D.; Mccarty, G.W. Evaluating the relationship between biomass, percent groundcover and remote sensing indices across six winter cover crop fields in Maryland, United States. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 88–102. [Google Scholar] [CrossRef] [Green Version]
- Agapiou, A.; Hadjimitsis, D.G.; Alexakis, D.D. Evaluation of Broadband and Narrowband Vegetation Indices for the Identification of Archaeological Crop Marks. Remote. Sens. 2012, 4, 3892–3919. [Google Scholar] [CrossRef] [Green Version]
- Sibanda, M.; Mutanga, O.; Rouget, M.; Kumar, L. Estimating Biomass of Native Grass Grown under Complex Management Treatments Using WorldView-3 Spectral Derivatives. Remote. Sens. 2017, 9, 55. [Google Scholar] [CrossRef] [Green Version]
- Cho, M.A.; Sobhan, I.M.; Skidmore, A.K. Estimating fresh grass/herb biomass from HYMAP data using the red edge position. SPIE Opt. Photonics 2006, 6298, 629805. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Scheel, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS.; NASA: Washington, DC, USA, 1974. [Google Scholar]
- Tanaka, S.; Kawamura, K.; Maki, M.; Muramoto, Y.; Yoshida, K.; Akiyama, T. Spectral Index for Quantifying Leaf Area Index of Winter Wheat by Field Hyperspectral Measurements: A Case Study in Gifu Prefecture, Central Japan. Remote. Sens. 2015, 7, 5329–5346. [Google Scholar] [CrossRef] [Green Version]
- Henrich, V.; Krauss, G.; Gotze, C.; Sandow, C. Index DataBase: A Database for Remote Sensing Indices; University of Bonn: Bonn, Germany, 2020. [Google Scholar]
- Yu, K.-Q.; Zhao, Y.-R.; Li, X.-L.; Shao, Y.-N.; Liu, F.; He, Y. Hyperspectral Imaging for Mapping of Total Nitrogen Spatial Distribution in Pepper Plant. PLoS ONE 2014, 9, e116205. [Google Scholar] [CrossRef]
- Zhao, Y.-R.; Yu, K.-Q.; Li, X.-L.; He, Y. Study on SPAD visualization of pumpkin leaves based on hyperspectral imaging technology. Spectrosc. Spectr. Anal. 2014, 34, 1378–1382. [Google Scholar]
- Zhao, Y.-R.; Li, X.; Yu, K.-Q.; Cheng, F.; He, Y. Hyperspectral Imaging for Determining Pigment Contents in Cu-cumber Leaves in Response to Angular Leaf Spot Disease. Sci. Rep. 2016, 6, 27790. [Google Scholar] [CrossRef]
- Jarmer, T.; Vohland, M. Spectroscopy and hyperspectral imagery for nitrogen assessment of summer barley. In Proceedings of the 2011 EARSeL 7th SIG-Imaging Spectroscopy Workshop, Edinburgh, UK, 11–13 April 2011. [Google Scholar]
- Yule, I.; Pullanagari, R.; Irwin, M.; McVeagh, P.; Kereszturi, G.; White, M.; Manning, M. Mapping nutrient concentration in pasture using hyperspectral imaging. J. N. Z. Grassl. 2015, 77, 47–50. [Google Scholar] [CrossRef]
- Mirzaie, M.; Darvishzadeh, M.R.; Shakiba, A.; Matkan, A.A.; Atzberger, C.; Skidmore, A. Comparative analysis of different uni- and multi-variate methods forestimation of vegetation water content using hyper-spectralmeasurements. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 1–11. [Google Scholar] [CrossRef]
- Ullah, S.; Skidmore, A.K.; Ramoelo, A.; Groen, T.A.; Naeem, M.; Ali, A. Retrieval of leaf water content spanning the visible to thermal infrared spectra. ISPRS J. Photogramm. Remote. Sens. 2014, 93, 56–64. [Google Scholar] [CrossRef]
- Casas, A.; Riaño, D.; Ustin, S.; Dennison, P.; Salas, J. Estimation of water-related biochemical and biophysical vegetation properties using multitemporal airborne hyperspectral data and its comparison to MODIS spectral response. Remote. Sens. Environ. 2014, 148, 28–41. [Google Scholar] [CrossRef]
- Katsoulas, N.; Elvanidi, A.; Ferentinos, K.P.; Kacira, M.; Bartzanas, T.; Kittas, C. Crop reflectance monitoring as a tool for water stress detection in greenhouses: A review. Biosyst. Eng. 2016, 151, 374–398. [Google Scholar] [CrossRef]
- Jackman, P.; Sun, D.-W.; Allen, P.; Valous, N.A.; Mendoza, F.; Ward, P. Identification of important image features for pork and turkey ham classification using colour and wavelet texture features and genetic selection. Meat Sci. 2010, 84, 711–717. [Google Scholar] [CrossRef] [PubMed]
- Oude-Elferink, S.J.W.H.; Driehuis, F.; Gottschal, J.C.; Spoelstra, S.F. Silage Fermentation Processes and Their Manipulation; Food and Agriculture Organisation: New York, NY, USA, 2020. [Google Scholar]
- Xiaoping, W.; Ni, G.; Kai, Z.; Jing, W. Hyperspectral Remote Sensing Estimation Models of Aboveground Biomass in Gannan Rangelands. Procedia Environ. Sci. 2011, 10, 697–702. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Dong, S.; Li, S.; Xu, Y.; Liu, S.; Zhao, H.; Yeomans, J.; Li, Y.; Shen, H.; Wu, S.; et al. Using the random forest model and validated MODIS with the field spectrometer measurement promote the accuracy of estimating aboveground biomass and coverage of alpine grasslands on the Qinghai-Tibetan Plateau. Ecol. Indic. 2020, 112, 106114. [Google Scholar] [CrossRef]
- Pullanagari, R.; Dehghan-Shoar, M.; Yule, I.J.; Bhatia, N. Field spectroscopy of canopy nitrogen concentration in temperate grasslands using a convolutional neural network. Remote. Sens. Environ. 2021, 257, 112353. [Google Scholar] [CrossRef]
- Sonobe, R.; Sano, T.; Horie, H. Using spectral reflectance to estimate leaf chlorophyll content of tea with shading treatments. Biosyst. Eng. 2018, 175, 168–182. [Google Scholar] [CrossRef]
- Thulin, S.; Hill, M.J.; Held, A.; Jones, S.; Woodgate, P. Hyperspectral determination of feed quality constituents in temperate pastures: Effect of processing methods on predictive relationships from partial least squares regression. Int. J. Appl. Earth Obs. Geoinf. 2012, 19, 322–334. [Google Scholar] [CrossRef]
- Raja, R.; Nguyen, T.T.; Slaughter, D.C.; Fennimore, S.A. Real-time weed-crop classification and localisation technique for robotic weed control in lettuce. Biosyst. Eng. 2020, 192, 257–274. [Google Scholar] [CrossRef]
- De Souza, M.F.; Amaral, L.R.D.; Oliveira, S.R.D.M.; Coutinho, M.A.N.; Netto, C.F. Spectral differentiation of sugarcane from weeds. Biosyst. Eng. 2020, 190, 41–46. [Google Scholar] [CrossRef]
- Raja, R.; Slaughter, D.C.; Fennimore, S.A.; Nguyen, T.T.; Vuong, V.L.; Sinha, N.; Tourte, L.; Smith, R.F.; Siemens, M.C. Crop signalling: A novel crop recognition technique for robotic weed control. Biosyst. Eng. 2019, 187, 278–291. [Google Scholar] [CrossRef]
- Pantazi, X.-E.; Moshou, D.; Bravo, C. Active learning system for weed species recognition based on hyperspectral sensing. Biosyst. Eng. 2016, 146, 193–202. [Google Scholar] [CrossRef]
Feature | Wavelengths in Nanometres | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Biomass | 450 | 490 | 519 | 544 | 587 | 591 | 647 | 653 | 664 | 698 | 806 | 1020 |
Dry% | 398 | 413 | 431 | 555 | 608 | 629 | 660 | 698 | 860 | 881 | 902 | 962 |
Sugars | 394 | 512 | 541 | 601 | 619 | 657 | 677 | 761 | 816 | 819 | 916 | 1015 |
Nitrates | 394 | 548 | 615 | 629 | 677 | 691 | 728 | 731 | 761 | 809 | 819 | 993 |
10-Fold Cross Validation | Biomass | Dry% | Sugars | Nitrates |
---|---|---|---|---|
Model1 Coefficient of Determination | 0.624 | 0.514 | 0.550 | 0.489 |
Model2 Coefficient of Determination | 0.607 | 0.522 | 0.548 | 0.494 |
Model3 Coefficient of Determination | 0.628 | 0.548 | 0.498 | 0.498 |
Model4 Coefficient of Determination | 0.614 | 0.508 | 0.476 | 0.476 |
Model5 Coefficient of Determination | 0.622 | 0.538 | 0.471 | 0.471 |
Average Coefficient of Determination | 0.62 | 0.53 | 0.54 | 0.49 |
Average RMSEP/σ | 0.61 | 0.68 | 0.67 | 0.72 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jackman, P.; Lee, T.; French, M.; Sasikumar, J.; O’Byrne, P.; Berry, D.; Lacey, A.; Ross, R. Predicting Key Grassland Characteristics from Hyperspectral Data. AgriEngineering 2021, 3, 313-322. https://doi.org/10.3390/agriengineering3020021
Jackman P, Lee T, French M, Sasikumar J, O’Byrne P, Berry D, Lacey A, Ross R. Predicting Key Grassland Characteristics from Hyperspectral Data. AgriEngineering. 2021; 3(2):313-322. https://doi.org/10.3390/agriengineering3020021
Chicago/Turabian StyleJackman, Patrick, Thomas Lee, Michael French, Jayadeep Sasikumar, Patricia O’Byrne, Damon Berry, Adrian Lacey, and Robert Ross. 2021. "Predicting Key Grassland Characteristics from Hyperspectral Data" AgriEngineering 3, no. 2: 313-322. https://doi.org/10.3390/agriengineering3020021
APA StyleJackman, P., Lee, T., French, M., Sasikumar, J., O’Byrne, P., Berry, D., Lacey, A., & Ross, R. (2021). Predicting Key Grassland Characteristics from Hyperspectral Data. AgriEngineering, 3(2), 313-322. https://doi.org/10.3390/agriengineering3020021