From Conventional to Precision Fertilization: A Case Study on the Transition for a Small-Medium Farm
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Experimental Site
2.2. Soil Geophysical and Traditional Survey
2.3. Harvest Monitoring
2.4. Data Processing
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Acronyms
P.A. | Precision Agriculture |
A.R.P. | Automatic Resistivity Profiler |
G.P.S. | Global positioning system |
D.M. | Dry Matter |
QGIS | Quantum Gis |
CaCO3 | Total Carbonates; |
Pav | Available Phosphorus; |
S.O.C. | Soil Organic Carbon; |
R.F. | Rock Fragments. |
pHw | Soil pH measurements in water |
Res1 | Electrical resistivity of the 0–50 cm layer (Ω m) |
References
- European Union (EU). Precision Agriculture: An Opportunity for E.U. Farmers—Potential Support with the CAP 2014–2020; Zarco-Tejada, P.J., Hubbard, N., Loudjani, P., Eds.; Monitoring Agriculture ResourceS (MARS) Unit H04; Joint Research Centre (JRC) of the European Commission: European Union, 2014; Available online: http://www.europarl.europa.eu/ (accessed on 25 October 2016).
- Balafoutis, A.; Beck, B.; Fountas, S.; Vangeyte, J.; Van Der Wal, T.; Soto, I.; Gómez-Barbero, M.; Barnes, A.; Eory, V. Precision Agriculture Technologies Positively Contributing to GHG Emissions Mitigation, Farm Productivity and Economics. Sustainability 2017, 9, 1339. [Google Scholar] [CrossRef] [Green Version]
- Van Evert, F.K.; Gaitán-Cremaschi, D.; Fountas, S.; Kempenaar, C. Can Precision Agriculture Increase the Profitability and Sustainability of the Production of Potatoes and Olives? Sustainability 2017, 9, 1863. [Google Scholar] [CrossRef] [Green Version]
- Bitella, G.; Rossi, R.; Loperte, A.; Sartriani, A.; Lapenna, V.; Perniola, M.; Amato, M. Geophysical Techniques for Plant, Soil, and Root Research Related to Sustainability. In The Sustainability of Agro-Food and Natural Resource Systems in the Mediterranean Basin; Vastola, A., Ed.; Springer: Cham, Switzerland, 2015; pp. 353–373. [Google Scholar] [CrossRef] [Green Version]
- Shafi, U.; Mumtaz, R.; García-Nieto, J.; Hassan, S.A.; Zaidi, S.A.R.; Iqbal, N. Precision Agriculture Techniques and Practices: From Considerations to Applications. Sensors 2019, 19, 3796. [Google Scholar] [CrossRef] [Green Version]
- Stoorvogel, J.J.; Kooistra, L.; Bouma, J. Managing Soil Variability at Different Spatial Scales as a basis for precision agriculture. In Soil-Specific Farming Precision Agriculture; Lal, R., Stewart, B.A., Eds.; CRC Press: Boca Raton, FL, USA, 2015; pp. 37–72. [Google Scholar] [CrossRef]
- Miller, N.; Griffin, T.; Bergtold, J. Kansas Farms’ Sequence of Information-Intensive Precision Agriculture Technology Adoption in Bundles. 2016. Available online: http://www.agmanager.info/machinery/precision-agriculture/kansas-farms-sequence-information-intensive-precision-agriculture (accessed on 1 November 2016).
- Bucci, G.; Bentivoglio, D.; Finco, A.; Belletti, M. Exploring the impact of innovation adoption in agriculture: How and where Precision Agriculture Technologies can be suitable for the Italian farm system? IOP Conf. Ser. Earth Environ. Sci. 2019, 275, 012004. [Google Scholar] [CrossRef]
- Miller, N.J.; Griffin, T.W.; Ciampitti, I.; Sharda, A. Farm adoption of embodied knowledge and information intensive precision agriculture technology bundles. Precis. Agric. 2018, 20, 348–361. [Google Scholar] [CrossRef]
- Li, X.; Hess, T.J.; Valacich, J.S. Why do we trust new technology? A study of initial trust formation with organizational information systems. J. Strat. Inf. Syst. 2008, 17, 39–71. [Google Scholar] [CrossRef]
- Haapala, H.E.S. Speeding up innovation in agricultural IT. J. Agric. Eng. 2013, 44, 137–139. [Google Scholar]
- MIPAAF—Ministero Delle Politiche Agricole, Alimentari e Forestali. Consultazione Pubblica Linee Guida per Agricoltura di Precisione. (Public Consultation on Precision Farming Guidelines). 2016. Available online: https://www.politicheagricole.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/10349 (accessed on 30 July 2016).
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Burt, R. Soil Survey Laboratory Methods Manual; Soil Survey Investigation Report No. 42, Version 4.0; USDA-NRCA: Lincoln, NE, USA, 2004. [Google Scholar]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; Circular No. 939; United States Department of Agriculture: Washington, DC, USA, 1954. [Google Scholar]
- Deere, J. GreenStarTM—Forage Harvester: Operator’s Manual; OMPFP12075: Issue F2; John Deere Ag Management Solutions: Moline, IL, USA, 2012. [Google Scholar]
- “R” Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2008; ISBN 3-900051-07-0. [Google Scholar]
- QGIS Development Team. Geographic Information System. Open Source Geospatial Foundation Project. 2016. Available online: http://www.qgis.org/ (accessed on 31 October 2016).
- Bivand, R.; Keitt, T.; Rowlingson, B. rgdal: Bindings for the Geospatial Data Abstraction Library. R Package Version 0.8-16. 2008. Available online: http://CRAN.R-project.org/package¼rgdal (accessed on 1 November 2016).
- Córdoba, M.A.; Bruno, C.I.; Costa, J.L.; Peralta, N.R.; Balzarini, M.G. Protocol for multivariate homogeneous zone delineation in precision agriculture. Biosyst. Eng. 2016, 143, 95–107. [Google Scholar] [CrossRef]
- Chen, D.; Shams, S.; Carmona-Moreno, C.; Leone, A. Assessment of open source GIS software for water resources management in developing countries. J. Hydro Environ. Res. 2010, 4, 253–264. [Google Scholar] [CrossRef]
- Tabbagh, A.; Dabas, M.; Hesse, A.; Panissod, C. Soil resistivity: A non-invasive tool to map soil structure horizonation. Geoderma 2000, 97, 393–404. [Google Scholar] [CrossRef]
- Tremsin, V.A. Real-Time Three-Dimensional Imaging of Soil Resistivity for Assessment of Moisture Distribution for Intelligent Irrigation. Hydrology 2017, 4, 54. [Google Scholar] [CrossRef] [Green Version]
- Aizebeokhai, A.P. Assessment of soil salinity using electrical resistivity imaging and induced polarization methods. Afr. J. Agric. Res. 2014, 9, 3369–3378. [Google Scholar] [CrossRef]
- Fedotov, G.N.; Tretyakov, Y.D.; Pozdnayakov, A.I.; Zhukov, D.V. The Role of Organomineral Gel in the Origin of Soil Resistivity: Concept and Experiments. Eurasian Soil Sci. 2005, 38, 492–500. [Google Scholar]
- Piccoli, I.; Furlan, L.; Lazzaro, B.; Morari, F. Examining conservation agriculture soil profiles: Outcomes from northeastern Italian silty soils combining indirect geophysical and direct assessment methods. Eur. J. Soil Sci. 2020, 71, 1064–1075. [Google Scholar] [CrossRef]
- Hunt, R.E. Geotechnical Engineering Investigation Handbook, 2nd ed.; Taylor & Francis: Boca Raton, FL, USA, 2005; ISBN 9780849321825. [Google Scholar]
- Xie, X.; Beni, G. A validity measure for fuzzy clustering. IEEE Trans. Pattern Anal. Mach. Intell. 1991, 13, 841–847. [Google Scholar] [CrossRef]
- Fukuyama, Y.; Sugeno, M. A new method of choosing the number of clusters for the fuzzy c-means method. In Proceedings of the 5th Fuzzy System Symposium, Kobe, Japan, 1989; pp. 247–250. [Google Scholar]
- Bezdek, J.C. Cluster Validity with Fuzzy Sets. J. Cybern. 1973, 3, 58–73. [Google Scholar] [CrossRef]
- Windham, M.P. Cluster validity for fuzzy clustering algorithms. Fuzzy Set Syst. 1981, 5, 177–185. [Google Scholar] [CrossRef]
- Galarza, R.; Mastaglia, N.; Albornoz, E.M.; Martìnez, C.E. Identificacion Automatica de Zonas de Manejo en Lotes Productivos Agrıcolas. In V Congreso Argentino de Agroinformatica (CAI) e 42da; 2013; Available online: http://sinc.unl.edu.ar/sinc-publications/2013/GMAM13/sinc_GMAM13.pdf (accessed on 23 April 2021).
- Corti, M.; Gallina, P.M.; Cavalli, D.; Ortuani, B.; Cabassi, G.; Cola, G.; Vigoni, A.; Degano, L.; Bregaglio, S. Evaluation of In-Season Management Zones from High-Resolution Soil and Plant Sensors. Agronomy 2020, 10, 1124. [Google Scholar] [CrossRef]
- Blackmore, S.; Godwin, R.J.; Fountas, S. The Analysis of Spatial and Temporal Trends in Yield Map Data over Six Years. Biosyst. Eng. 2003, 84, 455–466. [Google Scholar] [CrossRef]
- Vrindts, E.; Reyniers, M.; Darius, P.; De Baerdemaeker, J.; Gilot, M.; Sadaoui, Y.; Frankinet, M.; Hanquet, B.; Destain, M.-F. Analysis of Soil and Crop Properties for Precision Agriculture for Winter Wheat. Biosyst. Eng. 2003, 85, 141–152. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, M.S.; Cora, J.E. Management zones using fuzzy clustering based on spatial-temporal variability of soil and corn yield. Engenharia Agrícola 2015, 35, 470–483. [Google Scholar] [CrossRef] [Green Version]
- Ferro, N.D.; Camarotto, C.; Piccoli, I.; Berti, A.; Mills, J.; Morari, F. Stakeholder Perspectives to Prevent Soil Organic Matter Decline in Northeastern Italy. Sustainability 2020, 12, 378. [Google Scholar] [CrossRef] [Green Version]
- Gangwar, D.S.; Tyagi, S.; Soni, S.K. Connecting Farmers to Knowledge, Networks and Institutions for Agroecological Sustainability. In Proceedings of the 2020 International Conference on Electrical and Electronics Engineering (ICE3), Gorakhpur, India, 14–15 February 2020; pp. 311–315. [Google Scholar] [CrossRef]
- Martínez-Casasnovas, J.A.; Escolà, A.; Arnó, J. Use of farmer knowledge in the delineation of potential management zones in precision agriculture: A case study in maize (Zea mays L.). Agriculture 2018, 8, 84. [Google Scholar] [CrossRef] [Green Version]
Contents | No. | Mean | Min | Max | Coefficient of Variation (%) |
---|---|---|---|---|---|
pH | 10 | 7.8 | 7.5 | 8.1 | 2 |
Sand (%) | 10 | 54 | 26 | 78 | 29 |
Silt (%) | 10 | 38 | 12 | 56 | 34 |
Clay (%) | 10 | 9 | 2 | 18 | 60 |
CaCO3 (g/kg) | 9 | 77.1 | 9.0 | 183 | 75 |
Pav (mg/kg) | 10 | 61.8 | 27.4 | 101 | 38 |
S.O.C. (%) | 10 | 1.98 | 0.84 | 3.53 | 44 |
R.F. (%) | 10 | 31 | 15 | 50 | 40 |
Title 1 | r | p-Value |
---|---|---|
0.54 | 0.080 | |
0.91 | 0.000 | |
0.93 | 0.000 | |
0.47 | 0.172 | |
0.86 | 0.001 | |
0.77 | 0.009 | |
0.81 | 0.007 | |
0.89 | 0.038 |
Statistical Index | Triticale Silage | Maize Silage | ||||
---|---|---|---|---|---|---|
2 Classes | 3 Classes | 4 Classes | 2 Classes | 3 Classes | 4 Classes | |
Xie-Beni | 6.12 × 10−6 | 1.52 × 10−5 | 9.06 × 10−6 | 6.20 × 10−6 | 1.72 × 10−5 | 1.05 × 10−5 |
Fukuyama Sugeno | −7.40 × 104 | −1.05 × 105 | −1.14 × 105 | −7.61 × 104 | −1.02 × 105 | −1.02 × 105 |
Partition coefficient | 1.04 | 1.07 | 1.06 | 1.04 | 1.09 | 1.07 |
Proportion Exponent | 6.72 × 10−2 | 1.07 × 10−1 | 9.52 × 10−2 | 7.22 × 10−2 | 1.39 × 10−1 | 1.09 × 10−1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brambilla, M.; Romano, E.; Toscano, P.; Cutini, M.; Biocca, M.; Ferré, C.; Comolli, R.; Bisaglia, C. From Conventional to Precision Fertilization: A Case Study on the Transition for a Small-Medium Farm. AgriEngineering 2021, 3, 438-446. https://doi.org/10.3390/agriengineering3020029
Brambilla M, Romano E, Toscano P, Cutini M, Biocca M, Ferré C, Comolli R, Bisaglia C. From Conventional to Precision Fertilization: A Case Study on the Transition for a Small-Medium Farm. AgriEngineering. 2021; 3(2):438-446. https://doi.org/10.3390/agriengineering3020029
Chicago/Turabian StyleBrambilla, Massimo, Elio Romano, Pietro Toscano, Maurizio Cutini, Marcello Biocca, Chiara Ferré, Roberto Comolli, and Carlo Bisaglia. 2021. "From Conventional to Precision Fertilization: A Case Study on the Transition for a Small-Medium Farm" AgriEngineering 3, no. 2: 438-446. https://doi.org/10.3390/agriengineering3020029
APA StyleBrambilla, M., Romano, E., Toscano, P., Cutini, M., Biocca, M., Ferré, C., Comolli, R., & Bisaglia, C. (2021). From Conventional to Precision Fertilization: A Case Study on the Transition for a Small-Medium Farm. AgriEngineering, 3(2), 438-446. https://doi.org/10.3390/agriengineering3020029