Estimate and Temporal Monitoring of Height and Diameter of the Canopy of Recently Transplanted Coffee by a Remotely Piloted Aircraft System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Area of Interest
2.2. Field Measurements
2.3. RPAS-Based Data Collection and Processing
2.4. Statistics and Data Analysis
3. Results and Discussion
3.1. In-Field Canopy Height and Diameter Measurements and Aerial Images
3.2. Statistical Differences between Field Measurements and Aerial Images
3.3. Estimation of the Linear Equation for Height and Crown Diameter Variables Using Aerial Images
3.4. Monitoring the Temporal Development Profile of Coffee Plants
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Companhia Nacional de Abastecimento—(CONAB). Acompanhamento da Safra Brasileira de Café—Primeiro Levantamento; Boletim Safra; Observatório Agrícola: Brasília, Brazil, 2022; Volume 1. [Google Scholar]
- Companhia Nacional de Abastecimento—(CONAB). Acompanhamento da Safra Brasileira de Café—Quarto Levantamento; Boletim Safra; Observatório Agrícola: Brasília, Brazil, 2020; Volume 5. [Google Scholar]
- Lioutas, E.D.; Charatsari, C. Smart farming and short food supply chains: Are they compatible? Land Use Policy 2020, 94, 104541. [Google Scholar] [CrossRef]
- Klerkx, L.; Rose, D. Dealing with the game-changing technologies of Agriculture 4.0: How do we manage diversity and responsibility in food system transition pathways? Glob. Food Sec. 2020, 24, 100347. [Google Scholar] [CrossRef]
- Dos Santos, L.M.; Barbosa, B.D.D.S.; Diotto, A.V.; Maciel, D.T.; Xavier, L.A. Biophysical parameters of coffee crop estimated by UAV RGB images. Precis. Agric. 2020, 21, 1227–1241. [Google Scholar] [CrossRef]
- MAPA. Ministério da Agricultura, Pecuária e Abastecimento. Agricultura de Precisão/Ministério da Agricultura, Pecuária e Abastecimento. Secretaria de Desenvolvimento Agropecuário e Cooperativismo—Brasília: Mapa/ACS. 2009. Available online: http://www.abc.gov.br/training/informacoes/InstituicaoMAPA_en.aspx (accessed on 5 December 2021).
- Chemura, A.; Mutanga, O.; Dube, T. Integrating age in the detection and mapping of incongruous patches in coffee (Coffea arabica L.) plantations using multi-temporal Landsat 8 NDVI anomalies. Int. J. Appl. Earth Obs. Geoinf. 2017, 57, 1–13. [Google Scholar] [CrossRef]
- Oliveira, A.J.; Assis, G.A.; Guizilini, V.; Faria, E.R.; Souza, J.R. Segmenting and Detecting Nematode in Coffee Crops Using Aerial Images. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Cham, Switzerland, 2019; Volume 11754 LNCS, pp. 274–283. ISBN 9783030349943. [Google Scholar]
- Marin, D.B.; Alves, M.D.C.; Pozza, E.A.; Gandia, R.M.; Cortez, M.L.J.; Mattioli, M.C. Sensoriamento remoto multiespectral na identificação e mapeamento das variáveis bióticas e abióticas do cafeeiro. Rev. Ceres 2019, 66, 142–153. [Google Scholar] [CrossRef] [Green Version]
- Santana, L.S.; Ferraz, G.A.E.S.; Cunha, J.P.B.; Santana, M.S.; Faria, R.D.; Marin, D.B.; Rossi, G.; Conti, L.; Vieri, M.; Sarri, D. Monitoring errors of semi-mechanized coffee planting by remotely piloted aircraft. Agronomy 2021, 11, 1224. [Google Scholar] [CrossRef]
- Barbosa, B.D.S.; Ferraz, G.A.E.S.; Dos Santos, L.M.; Santana, L.S.; Marin, D.B.; Rossi, G.; Conti, L. Application of rgb images obtained by uav in coffee farming. Remote Sens. 2021, 13, 2397. [Google Scholar] [CrossRef]
- Moles, A.T.; Warton, D.I.; Warman, L.; Swenson, N.G.; Laffan, S.W.; Zanne, A.E.; Pitman, A.; Hemmings, F.A.; Leishman, M.R. Global patterns in plant height. J. Ecol. 2009, 97, 923–932. [Google Scholar] [CrossRef]
- Santos, H.G.D.; Jacomine, P.K.T.; Anjos, L.H.C.D.; Oliveira, V.A.D.; Lumbreras, J.F.; Coelho, M.R.; Almeida, J.A.D.; Araújo Filho, J.C.D.; Oliveira, J.B.D.; Cunha, T.J.F. Brazilian system of soil classification-SBCS; 5a; Embrapa: Rio de Janeiro, Brazil, 2018; ISBN 978-85-7035-800-4 1. [Google Scholar]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; de Moraes Gonçalves, J.L.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Zeitschrift 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Moreira da Silva, F.; Silva de Oliveira, M.; Paiva Custódio, A.A.; Ferreira Ponciano Ferraz, P. Variabilidade espacial dos atributos da planta de uma lavoura cafeeira. Rev. Cienc. Agron. 2017, 48, 81–91. [Google Scholar] [CrossRef] [Green Version]
- Panagiotidis, D.; Abdollahnejad, A.; Surový, P.; Chiteculo, V. Determining tree height and crown diameter from high-resolution UAV imagery. Int. J. Remote Sens. 2017, 38, 2392–2410. [Google Scholar] [CrossRef]
- Martínez-Carricondo, P.; Agüera-Vega, F.; Carvajal-Ramírez, F.; Mesas-Carrascosa, F.J.; García-Ferrer, A.; Pérez-Porras, F.J. Assessment of UAV-photogrammetric mapping accuracy based on variation of ground control points. Int. J. Appl. Earth Obs. Geoinf. 2018, 72, 1–10. [Google Scholar] [CrossRef]
- Demšar, J.; Curk, T.; Erjavec, A.; Gorup, Č.; Hočevar, T.; Milutinovič, M.; Možina, M.; Polajnar, M.; Toplak, M.; Starič, A.; et al. Orange: Data Mining Toolbox in Python. J. Mach. Learn. Res. 2013, 14, 2349–2353. [Google Scholar]
- Matias, F.I.; Caraza-Harter, M.V.; Endelman, J.B. FIELDimageR: An R package to analyze orthomosaic images from agricultural field trials. Plant Phenome J. 2020, 3, 1–6. [Google Scholar] [CrossRef]
- Tatagiba, S.D.; Pezzopane, J.E.M.; dos Reis, E.F. Crescimento vegetativo de mudas de café arábica (Coffea arabica L.) submetidas a diferentes níveis de sombreamento. Coffee Sci. 2010, 5, 251–261. [Google Scholar]
- Marana, J.P.; Miglioranza, É.; Fonseca, É.D.P.; Kainuma, R.H. Índices de qualidade e crescimento de mudas de café produzidas em tubetes. Ciência Rural 2008, 38, 39–45. [Google Scholar] [CrossRef]
- Souza, L.S.; Losasso, P.H.L.; Oshiiwa, M.; Garcia, R.R.; Goes Filho, L.A. Efeitos das faixas de controle do capim-braquiária (Brachiaria decumbens) no desenvolvimento inicial e na produtividade do cafeeiro (Coffea arabica L.). Planta Daninha 2006, 24, 715–720. [Google Scholar] [CrossRef] [Green Version]
- Bendig, J.; Bolten, A.; Bennertz, S.; Broscheit, J.; Eichfuss, S.; Bareth, G. Estimating Biomass of Barley Using Crop Surface Models (CSMs) Derived from UAV-Based RGB Imaging. Remote Sens. 2014, 6, 10395–10412. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, C.H.S. Cultivares de Café; Embrapa: Brasília, Brazil, 2007. [Google Scholar]
- Da Cunha, J.P.; Sirqueira, M.A.; Hurtado, S. Estimating vegetation volume of coffee crops using images from unmanned aerial vehicles. Eng. Agrícola 2019, 39, 41–47. [Google Scholar] [CrossRef]
- Carrijo, G.L.A.; Oliveira, D.E.; de Assis, G.A.; Carneiro, M.G.; Guizilini, V.C.; Souza, J.R. Automatic detection of fruits in coffee crops from aerial images. In Proceedings of the 2017 Latin American Robotics Symposium (LARS) and 2017 Brazilian Symposium on Robotics (SBR), Curitiba, Brazil, 8–11 November 2017; IEEE: Piscataway, NJ, USA, 2017; Volume 2017, pp. 1–6. [Google Scholar]
- Chemura, A.; Mutanga, O.; Dube, T. Remote sensing leaf water stress in coffee (Coffea arabica L.) using secondary effects of water absorption and random forests. Phys. Chem. Earth Parts A/B/C 2017, 100, 317–324. [Google Scholar] [CrossRef]
Periods | Variables | Mean | Minimum | Maximum | Dispersal |
---|---|---|---|---|---|
8 mpt | Field Height | 44.90 | 34.00 | 61.00 | 0.16 |
Image Height | 46.20 | 27.00 | 68.00 | 0.27 | |
Field Diameter | 41.70 | 29.00 | 61.00 | 0.18 | |
Image Diameter | 42.30 | 32.00 | 57.00 | 0.17 | |
12 mpt | Field Height | 67.75 | 56.00 | 91.00 | 0.13 |
Image Height | 73.50 | 53.00 | 89.00 | 0.14 | |
Field Diameter | 67.60 | 55.00 | 101.00 | 0.15 | |
Image Diameter | 64.10 | 46.00 | 99.00 | 0.20 | |
16 mpt | Field Height | 93.20 | 68.00 | 110.00 | 0.11 |
Image Height | 94.30 | 82.00 | 123.00 | 0.11 | |
Field Diameter | 94.35 | 66.00 | 121.00 | 0.14 | |
Image Diameter | 93.45 | 76.00 | 119.00 | 0.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bento, N.L.; Ferraz, G.A.e.S.; Barata, R.A.P.; Soares, D.V.; Santana, L.S.; Barbosa, B.D.S. Estimate and Temporal Monitoring of Height and Diameter of the Canopy of Recently Transplanted Coffee by a Remotely Piloted Aircraft System. AgriEngineering 2022, 4, 207-215. https://doi.org/10.3390/agriengineering4010015
Bento NL, Ferraz GAeS, Barata RAP, Soares DV, Santana LS, Barbosa BDS. Estimate and Temporal Monitoring of Height and Diameter of the Canopy of Recently Transplanted Coffee by a Remotely Piloted Aircraft System. AgriEngineering. 2022; 4(1):207-215. https://doi.org/10.3390/agriengineering4010015
Chicago/Turabian StyleBento, Nicole Lopes, Gabriel Araújo e Silva Ferraz, Rafael Alexandre Pena Barata, Daniel Veiga Soares, Lucas Santos Santana, and Brenon Diennevan Souza Barbosa. 2022. "Estimate and Temporal Monitoring of Height and Diameter of the Canopy of Recently Transplanted Coffee by a Remotely Piloted Aircraft System" AgriEngineering 4, no. 1: 207-215. https://doi.org/10.3390/agriengineering4010015
APA StyleBento, N. L., Ferraz, G. A. e. S., Barata, R. A. P., Soares, D. V., Santana, L. S., & Barbosa, B. D. S. (2022). Estimate and Temporal Monitoring of Height and Diameter of the Canopy of Recently Transplanted Coffee by a Remotely Piloted Aircraft System. AgriEngineering, 4(1), 207-215. https://doi.org/10.3390/agriengineering4010015