The Effect of Climatic Parameters on Strawberry Production in a Small Walk-In Greenhouse
Abstract
:1. Introduction
2. Materials and Methods
2.1. Greenhouse Description
2.2. Greenhouse Environmental Monitoring
2.3. Greenhouse Strawberry Cultivation and Measurement
3. Results and Discussion
3.1. Climatic Parameters under Double PVC Sheets in Greenhouse
3.2. The Environmental Factors on Pick Up Dates
3.2.1. Air Temperature
3.2.2. Solar Radiation
3.2.3. Relative Humidity
3.3. Effect of Environmental Factors on Strawberries Production
3.3.1. Harvest on 20 February 2021
3.3.2. Harvest on 5 April 2021
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
number of thermocouple points outside the greenhouse | |
number of thermocouple points inside the greenhouse | |
Greek symbols | |
soluble sugar contents (%) | |
θ | temperature (°C) |
λ | solar radiation (W/m2) |
τ | time (hour) |
φ | relative humidity (%) |
Subscript | |
daytime | |
optimal high | |
inside greenhouse | |
optimal low | |
mean value | |
nighttime | |
outside greenhouse | |
Abbreviations | |
PVC | polyvinyl chloride |
RH | relative humidity |
SD | standard deviation |
SSC | soluble sugar content |
References
- Nagamatsu, S.; Tsubone, M.; Wada, T.; Oku, M.; Mori, M.; Hirata, C.; Hayashi, A.; Tanabata, T.; Isobe, S.; Takata, K.; et al. Strawberry fruit shape: Quantification by image analysis and QTL detection by genome-wide association analysis. Breed. Sci. 2021, 71, 167–175. [Google Scholar] [CrossRef]
- Ministry of the Environment; Ministry of Education, Culture, Sports, Science and Technology; Ministry of Agriculture, Forestry and Fisheries; Ministry of Land, Infrastructure, Transport and Tourism; Japan Meteorological Agency. Climate Change in Japan and Its Impacts; Synthesis Report on Observations, Projections and Impact Assessments of Climate Change; Pacific Consults, Co., Ltd.: Tokyo, Japan, 2018. [Google Scholar]
- Ariza, M.T.; Soria, C.; Medina-Mínguez, J.J.; Martínez-Ferri, E. Incidence of misshapen fruits in strawberry plants grown under tunnels is affected by cultivar, planting date, pollination, and low temperatures. Hortscience 2012, 47, 1569–1573. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Camp, M. Temperatures after bloom affect plant growth and fruit quality of strawberry. Sci. Hortic. 2000, 85, 183–199. [Google Scholar] [CrossRef]
- Kadir, S.; Sidhu, G.; Al-Khatib, K. Strawberry (Fragaria × ananassa Duch.) growth and productivity as affected by temperature. HortScience 2006, 41, 1423–1430. [Google Scholar] [CrossRef] [Green Version]
- Sage, R.F.; Kubien, D.S. The temperature response of C3 and C4 photosynthesis. Plant Cell Environ. 2007, 30, 1089–1106. [Google Scholar] [CrossRef]
- Palencia, P.; Martínez, F.; Medina, J.J.; López-Medina, J. Strawberry yield efficiency and its correlation with temperature and solar radiation. Hortic. Bras. 2013, 31, 93–99. [Google Scholar] [CrossRef] [Green Version]
- Takei, M. The Cultivation of Strawberry in Japan; Farm Extension Officer: Nagano, Japan, 2010. [Google Scholar]
- Atkinsona, C.J.; Nestbyb, R.; Forda, Y.Y.; Doddsa, P.A.A. Enhancing beneficial antioxidants in fruits: A plant physiological perspective. Biofactors 2005, 23, 229–234. [Google Scholar] [CrossRef]
- Leonardi, C.; Guichard, S.; Bertin, N. High vapour pressure deficit influences growth, transpiration and quality of tomato fruits. Sci. Hortic. 2000, 84, 285–296. [Google Scholar] [CrossRef]
- Sudar, R.; Jurković, Z.; Dugalić, K.; Tomac, I.; Jurković, V. Sorbitol and sugar composition of plum fruit during ripening. In Proceedings of the 46th Croatian and 6th International Symposium on Agriculture, Opatija, Croatia, 14–18 February 2011; pp. 1067–1071. [Google Scholar]
- Jules, J. Horticultural Reviews; John Wiley & Sons: New York, NY, USA, 1995; Volume 17. [Google Scholar]
- Murakami, K.; Fukuoka, N.; Noto, S. Improvement of greenhouse microenvironment and sweetness of melon (Cucumis melo L.) fruits by greenhouse shading with a new kind of near-infrared ray-cutting net in mid-summer. Sci. Hortic. 2017, 218, 1–7. [Google Scholar] [CrossRef]
- Basson, C.E.; Groenewald, J.H.; Kossmann, J.; Cronjé, C.; Bauer, R. Sugar and acid-related quality attributes and enzyme activities in strawberry fruits: Invertase is the main sucrose hydrolysing enzyme. Food Chem. 2010, 121, 1156–1162. [Google Scholar] [CrossRef]
- Li, H.; Li, T.; Gordon, R.J.; Asiedu, S.K.; Hu, K. Strawberry plant fruiting efficiency and its correlation with solar irradiance, temperature and reflectance water index variation. Environ. Exp. Bot. 2010, 168, 165–174. [Google Scholar] [CrossRef]
- Hao, X.; Zheng, J.; Celeste, L.; Guo, X.; Kholsa, S. Liquid desiccant dehumidification system for improving microclimate and plant growth in greenhouse cucumber production. Acta Hortic. 2017, 1170, 861–866. [Google Scholar] [CrossRef]
- Han, J.; Guo, H.; Brad, R.; Gao, Z.; Waterer, D. Dehumidification requirement for a greenhouse located in a cold region. Appl. Eng. Agric. 2015, 31, 291–300. [Google Scholar]
- Sultan, M.; Ashraf, H.; Miyazaki, T.; Shamshiri, R.R.; Hameed, I.A. Temperature and Humidity Control for the Next Generation Greenhouses: Overview of Desiccant and Evaporative Cooling Systems. In Next-Generation Greenhouses for Food Security; IntechOpen Ltd.: London, UK, 2021. [Google Scholar]
- Liu, H.; Yang, H.; Qi, R. A Review of electrically driven dehumidification technology for air-conditioning systems. Appl. Energy 2020, 279, 115863. [Google Scholar] [CrossRef]
- Rahman, M.S.; Guo, H.; Han, J. Dehumidification requirement modelling and control strategy for greenhouses in cold regions. Comput. Electron. Agric. 2021, 187, 106264. [Google Scholar] [CrossRef]
- Ishikawa, T.; Hayashi, A.; Nagamatsu, S.; Kyutoku, Y.; Dan, I.; Wada, T.; Oku, K.; Saeki, Y.; Uto, T.; Tanabata, T.; et al. Classification of strawberry fruit shape by machine learning. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.—ISPRS Arch. 2018, 42, 463–470. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.Y.; Zheng, W. Effect of plant growth temperature on antioxidant capacity in strawberry. J. Agric. Food Chem. 2001, 49, 4977–4982. [Google Scholar] [CrossRef]
- Akhatou, I.; Fernández-Recamales, A. Nutritional and nutraceutical quality of strawberries in relation to harvest time and crop conditions. J. Agric. Food Chem. 2014, 62, 5749–5760. [Google Scholar] [CrossRef]
- Zoratti, L.; Jaakola, L.; Häggman, H.; Giongo, L. Anthocyanin profile in berries of wild and cultivated Vaccinium spp. along altitudinal gradients in the Alps. J. Agric. Food Chem. 2015, 63, 8641–8650. [Google Scholar] [CrossRef] [Green Version]
- Cervantes, L.; Ariza, M.T.; Miranda, L.; Lozano, D.; Medina, J.J.; Soria, C.; Martínez-Ferri, E. Stability of Fruit Quality Traits of Different Strawberry Varieties under Variable Environmental Conditions. Agronomy 2020, 10, 1242. [Google Scholar] [CrossRef]
- Rivero, R.; Remberg, S.F.; Heide, O.M.; Sønsteby, A. Environmental Regulation of Dormancy, Flowering and Runnering in Two Genetically Distant Everbearing Strawberry Cultivars. Sci. Hortic. 2021, 290, 110515. [Google Scholar] [CrossRef]
- Menzel, C. Higher Temperatures Decrease Fruit Size in Strawberry Growing in the Subtropics. Horticulturae 2021, 7, 34. [Google Scholar] [CrossRef]
- Ledesma, N.A.; Kawabata, S. Responses of Two Strawberry Cultivars to Severe High Temperature Stress at Different Flower Development Stages. Sci. Hortic. 2016, 211, 319–327. [Google Scholar] [CrossRef]
- Karapatzak, E.K.; Wagstaffe, A.; Hadley, P.; Battey, N.H. High-Temperature-Induced Reductions in Cropping in Everbearing Strawberries (Fragaria × ananassa) Are Associated with Reduced Pollen Performance. Ann. Appl. Biol. 2012, 161, 255–265. [Google Scholar] [CrossRef]
- Ledesma, N.A.; Nakata, M.; Sugiyama, N. Effect of High Temperature Stress on the Reproductive Growth of Strawberry Cvs. “Nyoho” and “Toyonoka”. Sci. Hortic. 2008, 116, 186–193. [Google Scholar] [CrossRef]
- Pinto de Andrade, L.; Veloso, A.; Espírito Santo, C.; Dinis Gaspar, P.; Silva, P.D.; Resende, M.; Beato, H.; Baptista, C.; Pintado, C.M.; Paulo, L.; et al. Effect of Controlled Atmospheres and Environmental Conditions on the Physicochemical and Sensory Characteristics of Sweet Cherry Cultivar Satin. Agronomy 2022, 12, 188. [Google Scholar] [CrossRef]
- Hoppula, K.B.; Karhu, S.T. Strawberry fruit quality responses to the production environment. Int. J. Food Agric. Environ. 2006, 4, 166–170. [Google Scholar]
Designation | Specification |
---|---|
Model | HF-80ETG-60 (Mitsubishi Electric Corp.) |
Size | H 950 mm × V 900 mm |
Blade diameter | 800 mm |
Motor | 3 phase 200 V, 60 Hz, 0.4 kW |
Air flow rate | 290 m3/min |
Parameter | Instrument Name | Model/Type | Measurement Range | Accuracy |
---|---|---|---|---|
Temperature | Thermocouple | T-type | −250 to 350 °C | ±1 or ±0.75% (f.s.) (Standard accuracy) |
Relative humidity | Hygrometer | ES2-THB | 20 to 95% | ±3% |
Solar radiation | Pyranometer | ML-01 | 0 to 1000 W/m2 | ±1.70% |
Soluble sugar content | Digital refractometer | PAL-1 | 0 to 53% | ±0.2%Brix |
Sample No. | Width (mm) | Hight (mm) | Weight (g) | Mean β (%) |
---|---|---|---|---|
1 | 40 | 48 | 24.0 | 12.8 |
2 | 46 | 51 | 31.9 | 9.90 |
3 | 50 | 62 | 38.5 | 10.6 |
4 | 53 | 36 | 19.3 | 11.6 |
5 | 60 | 55 | 49.6 | 12.3 |
6 | 50 | 51 | 33.3 | 9.90 |
7 | 54 | 50 | 37.4 | 11.2 |
8 | 50 | 55 | 34.6 | 8.80 |
Sample No. | Width (mm) | Hight (mm) | Weight (g) | Mean β (%) |
---|---|---|---|---|
1 | 45 | 51 | 31.0 | 8.6 |
2 | 42 | 57 | 36.0 | 7.9 |
3 | 41 | 55 | 27.0 | 8.3 |
4 | 39 | 54 | 27.0 | 8.7 |
5 | 54 | 61 | 40.5 | 8.9 |
6 | 37 | 58 | 17.5 | 7.7 |
7 | 45 | 57 | 34.0 | 8.6 |
8 | 45 | 52 | 30.0 | 7.4 |
Traits | 20 February 2021 | 5 April 2021 | ||
---|---|---|---|---|
Mean | SD | Mean | SD | |
10.9 (%) | 1.3 | 8.3 (%) | 0.5 |
Characteristics | 20 February 2021 | 5 April 2021 |
---|---|---|
Average inside air temperature at night, () | 5.8 | 12.7 |
Average inside air temperature during the day, () | 17.8 | 21.2 |
Average difference between day and night temperatures, () | 12.0 | 8.5 |
Average inside solar radiation during the day (W/m2) | 255 | 307 |
Average inside relative humidity (%) | 73 | 63 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khammayom, N.; Maruyama, N.; Chaichana, C. The Effect of Climatic Parameters on Strawberry Production in a Small Walk-In Greenhouse. AgriEngineering 2022, 4, 104-121. https://doi.org/10.3390/agriengineering4010007
Khammayom N, Maruyama N, Chaichana C. The Effect of Climatic Parameters on Strawberry Production in a Small Walk-In Greenhouse. AgriEngineering. 2022; 4(1):104-121. https://doi.org/10.3390/agriengineering4010007
Chicago/Turabian StyleKhammayom, Napassawan, Naoki Maruyama, and Chatchawan Chaichana. 2022. "The Effect of Climatic Parameters on Strawberry Production in a Small Walk-In Greenhouse" AgriEngineering 4, no. 1: 104-121. https://doi.org/10.3390/agriengineering4010007
APA StyleKhammayom, N., Maruyama, N., & Chaichana, C. (2022). The Effect of Climatic Parameters on Strawberry Production in a Small Walk-In Greenhouse. AgriEngineering, 4(1), 104-121. https://doi.org/10.3390/agriengineering4010007