Opportunities of Digital Transformation in Post-Harvest Activities: A Single Case Study of an Engineering Solutions Provider
Abstract
:1. Introduction
2. Literature Review
2.1. Digital Technologies
2.2. Digital Transformation in Companies
2.3. Enabling Technologies for Digital Transformation in Post-Harvesting Activities
3. Results
3.1. Methodology
- (i)
- The researchers collected and studied related documents issued by the engineering solution provider company;
- (ii)
- The researchers took guided tours of the company’s facilities and two nearby customer installations, accompanied by company practitioners;
- (iii)
- The researchers interviewed three portfolio managers of the company;
- (iv)
- In a final meeting, one of the researchers presented the notes to the managers, who eventually amended, adjusted, and finally confirmed the findings, ensuring reliability.
3.2. Post-Harvest Main Activities
3.3. Digital Technology Products and Services for Post-Harvesting
4. Types of Opportunities
Exploring the Opportunities
5. Final Remarks
- (i)
- Digitalization of credit taking: The adoption of digital processes and platforms for credit applications and approvals, streamlining and expediting the financing process for producers;
- (ii)
- Digitalization of purchase operations: Implementing digital solutions to facilitate purchase transactions, improving efficiency, and reducing costs for trading companies and agro-industries;
- (iii)
- Digitalization of sale operations: Utilizing digital platforms to enhance sales processes, enabling faster and more secure transactions for both producers and trading companies;
- (iv)
- Digitalization of grain quality control: Leveraging digital technologies to monitor and control grain quality throughout the supply chain, ensuring higher standards and reducing quality-related risks for all stakeholders;
- (v)
- Digitalization of food safety control: Implementing digital systems and technologies to enhance food safety protocols, enabling better traceability and ensuring the delivery of safe and high-quality food products to consumers;
- (vi)
- Digitalization of grain movement information: Utilizing digital platforms to track and monitor grain movement, providing real-time information on storage, transportation, and logistics, resulting in increased transparency and efficiency in the supply chain;
- (vii)
- Digitalization of insurance contracting processes: Adopting digital solutions for insurance procedures, simplifying and streamlining the contracting process, reducing costs, and improving risk assessment and management for insurers, producers, and trading companies.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alexandratos, N.; Bruinsma, J. World Agriculture towards 2030/2050: The 2012 Revision. 2012. Available online: https://www.fao.org/3/ap106e/ap106e.pdf (accessed on 27 April 2023).
- Chandra, R.; Collis, S. Digital agriculture for small-scale producers: Challenges and opportunities. Commun. ACM 2021, 64, 75–84. [Google Scholar] [CrossRef]
- Hrustek, L. Sustainability is driven by agriculture through digital transformation. Sustainability 2020, 12, 8596. [Google Scholar] [CrossRef]
- Di Vaio, A.; Boccia, F.; Landriani, L.; Palladino, R. Artificial intelligence in the agri-food system: Rethinking sustainable business models in the COVID-19 scenario. Sustainability 2020, 12, 4851. [Google Scholar] [CrossRef]
- Qin, T.; Wang, L.; Zhou, Y.; Guo, L.; Jiang, G.; Zhang, L. Digital Technology-and-Services-Driven Sustainable Transformation of Agriculture: Cases of China and the EU. Agriculture 2022, 12, 297. [Google Scholar] [CrossRef]
- Godfray, H.; Beddington, J.; Crute, I.; Haddad, L.; Lawrence, D.; Muir, J.; Pretty, J.; Robinson, S.; Thomas, S.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 5967, 812–818. [Google Scholar] [CrossRef] [Green Version]
- Hossen, M.; Talukder, M.; Mamun, M.; Rahaman, H.; Paul, S.; Rahman, M.; Miarudin, M.; Ali, A.; Islam, M. Mechanization status, promotional activities, and government strategies of Thailand and Vietnam in comparison to Bangladesh. AgriEngineering 2020, 2, 489–510. [Google Scholar] [CrossRef]
- Dyck, G.; Hawley, E.; Hildebrand, K.; Paliwal, J. Digital Twins: A novel traceability concept for post-harvest handling. Smart Agric. Technol. 2022, 3, 100079. [Google Scholar] [CrossRef]
- Kayikci, Y.; Subramanian, N.; Dora, M.; Bhatia, M. Food supply chain in the era of Industry 4.0: Blockchain technology implementation opportunities and impediments from the perspective of people, process, performance, and technology. Prod. Plan. Control 2022, 33, 301–321. [Google Scholar] [CrossRef]
- Sibanda, W.; Ndiweni, E.; Boulkeroua, M.; Echchabi, A.; Ndlovu, T. Digital technology disruption on bank business models. Int. J. Bus. Perform. Manag. 2020, 21, 184–213. [Google Scholar] [CrossRef]
- Bharadwaj, A.; El Sawy, O.; Pavlou, P.; Venkatraman, N. Digital business strategy: Toward a next generation of insights. MIS Q. 2013, 37, 471–482. [Google Scholar] [CrossRef]
- Warner, K.; Wäger, M. Building dynamic capabilities for digital transformation: An ongoing process of strategic renewal. Long. Range Plann. 2019, 52, 326–349. [Google Scholar] [CrossRef]
- Yoo, Y.; Boland, R., Jr.; Lyytinen, K.; Majchrzak, A. Organizing for innovation in the digitized world. Organ. Sci. 2012, 23, 1398–1408. [Google Scholar] [CrossRef]
- Nambisan, S. Digital entrepreneurship: Toward a digital technology perspective of entrepreneurship. Enterpren. Theor. Pract. 2017, 41, 1029–1055. [Google Scholar] [CrossRef]
- Autio, E.; Nambisan, S.; Thomas, L.; Wright, M. Digital affordances, spatial affordances, and the genesis of entrepreneurial ecosystems. Strat. Entrepreneur. J. 2018, 12, 72–95. [Google Scholar] [CrossRef]
- Weber, E.; Büttgen, M.; Bartsch, S. How to take employees on the digital transformation journey: An experimental study on complementary leadership behaviors in managing organizational change. J. Bus. Res. 2022, 143, 225–238. [Google Scholar] [CrossRef]
- Tilson, D.; Lyytinen, K.; Sørensen, C. Research commentary-digital infrastructures: The missing IS research agenda. Inform. Syst. Res. 2010, 21, 748–759. [Google Scholar] [CrossRef]
- Henfridsson, O.; Yoo, Y. The liminality of trajectory shifts in institutional entrepreneurship. Organ. Sci. 2013, 25, 932–950. [Google Scholar] [CrossRef] [Green Version]
- Sellitto, M.; Luchese, J. Systemic cooperative actions among competitors: The case of a furniture cluster in Brazil. J. Ind. Compet. Trade 2018, 18, 513–528. [Google Scholar] [CrossRef]
- Ancillai, C.; Sabatini, A.; Gatti, M.; Perna, A. Digital technology and business model innovation: A systematic literature review and future research agenda. Technol. Forecast. Soc. 2023, 188, 122307. [Google Scholar] [CrossRef]
- Agnusdei, L.; Krstić, M.; Palmi, P.; Miglietta, P. Digitalization as a driver to achieve circularity in the agro-industry: A SWOT-ANP-ADAM approach. Sci. Total Environ. 2023, 882, 163441. [Google Scholar] [CrossRef]
- Monaghan, S.; Tippmann, E. Becoming a multinational enterprise: Using industry recipes to achieve rapid multinationalization. J. Int. Bus. Stud. 2018, 49, 473–495. [Google Scholar] [CrossRef]
- Sebastian, I.; Ross, J.; Beath, C.; Mocker, M.; Moloney, K.; Fonstad, N. How big old companies navigate digital transformation. MIS Q. Exec. 2017, 16, 197–213. [Google Scholar]
- Teece, D.; Linden, G. Business models, value capture, and the digital enterprise. J. Org. Des. 2017, 6, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Weiser, M. The computer for the 21st century. Sci. Am. 1991, 265, 94–105. [Google Scholar] [CrossRef]
- Lyytinen, K.; Yoo, Y. Research commentary: The next wave of nomadic computing. Inf. Syst. Res. 2002, 13, 377–388. [Google Scholar] [CrossRef] [Green Version]
- Westerman, G.; Bonnet, D. Revamping your business through digital transformation. MIT Sloan Manag. Rev. 2015, 56, 10. [Google Scholar]
- Thompson, N.; Bonnet, D.; Ye, Y. Why innovation’s future isn’t (just) open. MIT Sloan Manag. Rev. 2020, 61, 55–60. [Google Scholar]
- Berman, S. Digital transformation: Opportunities to create new business models. Strat. Leader. 2012, 40, 16–24. [Google Scholar] [CrossRef]
- Fitzgerald, M. How digital acceleration teams are influencing Nestlé´s 2000 brands. MIT Sloan Manag. Rev. 2014, 55, 1–5. [Google Scholar]
- Gray, P.; El Sawy, O.; Asper, G.; Thordarson, M. Realizing strategic value through center-edge digital transformation in consumer-centric industries. MIS Q. Exec. 2013, 12, 1–17. [Google Scholar]
- Svahn, F.; Mathiassen, L.; Lindgren, R. Embracing digital innovation in incumbent firms: How Volvo cars managed competing concerns. MIS Q. Exec. 2017, 41, 239–254. [Google Scholar] [CrossRef]
- Dattée, B.; Alexy, O.; Autio, E. Maneuvering in poor visibility: How firms play the ecosystem game when uncertainty is high. Acad. Manag. J. 2018, 91, 466–498. [Google Scholar] [CrossRef] [Green Version]
- Loonam, J.; Eaves, S.; Kumar, V.; Parry, G. Towards digital transformation: Lessons learned from traditional organizations. Strat. Change 2018, 27, 101–109. [Google Scholar] [CrossRef]
- Matt, C.; Hess, T.; Benlian, A. Digital transformation strategies. Bus. Inf. Syst. Eng. 2017, 57, 339–343. [Google Scholar] [CrossRef]
- Aspara, J.; Lamberg, J.; Laukia, A.; Tikkanen, H. Corporate business model transformation and inter-organizational cognition: The case of Nokia. Long Range Plan. 2013, 46, 459–474. [Google Scholar] [CrossRef] [Green Version]
- Chesbrough, H. Business model innovation: Opportunities and barriers. Long Range Plan. 2010, 43, 354–363. [Google Scholar] [CrossRef]
- Khanagha, S.; Volberda, H.; Oshri, I. Business model renewal and ambidexterity: Structural alteration and strategy formation process during transition to a Cloud business model. RD Manag. 2014, 44, 322–340. [Google Scholar] [CrossRef]
- Wirtz, B.; Schilke, O.; Ullrich, S. Strategic development of business models: Implications of the Web 2.0 for creating value on the Internet. Long Range Plan. 2010, 43, 272–290. [Google Scholar] [CrossRef]
- Day, G.; Schoemaker, P. Adapting to fast-changing markets and technologies. Calif. Manag. Rev. 2016, 58, 59–77. [Google Scholar] [CrossRef]
- Agarwal, R.; Helfat, C. Strategic renewal of organizations. Organ. Sci. 2009, 20, 281–293. [Google Scholar] [CrossRef] [Green Version]
- Teece, D. The foundations of enterprise performance: Dynamic and ordinary capabilities in an (economic) theory of firms. Acad. Manag. Perspect. 2014, 28, 328–352. [Google Scholar] [CrossRef]
- Zott, C.; Amit, R.; Massa, L. The business model: Recent developments and future research. J. Manag. 2011, 37, 1019–1042. [Google Scholar]
- Aversa, P.; Haefliger, S.; Reza, D. Building a winning business model portfolio. MIT Sloan Manag. Rev. 2017, 58, 49–54. [Google Scholar]
- Baden-Fuller, C.; Haefliger, S. Business models and technological innovation. Long Range Plan. 2013, 46, 419–426. [Google Scholar] [CrossRef] [Green Version]
- Casadesus-Masanell, R.; Ricart, J. From strategy to business models and tactics. Long Range Plan. 2010, 43, 195–215. [Google Scholar] [CrossRef]
- Teece, D. Business models, business strategy, and innovation. Long Range Plan. 2010, 43, 172–194. [Google Scholar] [CrossRef]
- Weill, P.; Woerner, S.L. Optimizing your digital business model. MIT Sloan Manag. Rev. 2013, 54, 71–78. [Google Scholar] [CrossRef]
- El Sawy, O.; Kræmmergaard, P.; Amsinck, H.; Vinther, A. How LEGO built the foundations and enterprise capabilities for digital leadership. MIS Q. Exec. 2016, 15, 174–201. [Google Scholar]
- Iansiti, M.; Lakhani, K. The truth about blockchain. Harv. Bus. Rev. 2017, 95, 118–127. [Google Scholar]
- McGrath, R. Business models: A discovery-driven approach. Long Range Plan. 2010, 43, 247–261. [Google Scholar] [CrossRef]
- Demil, B.; Lecocq, X. Business model evolution: In search of dynamic consistency. Long Range Plan. 2010, 43, 227–246. [Google Scholar] [CrossRef]
- Kim, S.; Min, S. Business model innovation performance: When does adding a new business model benefit an incumbent? Strat. Entrepren. J. 2015, 9, 34–57. [Google Scholar] [CrossRef]
- Markides, C. Disruptive innovation: In need of better theory. J. Prod. Innovate. Manag. 2006, 23, 19–25. [Google Scholar] [CrossRef]
- Nylén, D.; Holmström, J. Digital innovation strategy: A framework for diagnosing and improving digital product and service innovation. Bus. Horiz. 2015, 58, 57–67. [Google Scholar] [CrossRef] [Green Version]
- Velu, C.; Stiles, P. Managing decision-making and cannibalization for parallel business models. Long Range Plan. 2013, 46, 443–458. [Google Scholar] [CrossRef]
- Weill, P.; Woerner, S. Thriving in an increasingly digital ecosystem. MIT Sloan Manag. Rev. 2015, 56, 27–35. [Google Scholar]
- Teece, D. Business models and dynamic capabilities. Long Range Plan. 2018, 51, 40–49. [Google Scholar] [CrossRef]
- Velu, C. A systems perspective on business model evolution: The case of an agricultural information service provider in India. Long Range Plan. 2017, 50, 603–620. [Google Scholar] [CrossRef] [Green Version]
- Dunford, R.; Palmer, I.; Benveniste, J. Business model replication for early and rapid internationalization: The ING direct experience. Long Range Plan. 2010, 43, 655–674. [Google Scholar] [CrossRef]
- Calia, R.; Guerrini, F.; Moura, G. Innovation networks: From technological development to business model reconfiguration. Technovation 2007, 27, 426–432. [Google Scholar] [CrossRef]
- Gauss, L.; Lacerda, D.; Sellitto, M. Module-based machinery design: A method to support the design of modular machine families for reconfigurable manufacturing systems. Int. J. Adv. Manuf. Tech. 2019, 102, 3911–3936. [Google Scholar] [CrossRef]
- Borchardt, M.; Poltosi, L.; Sellitto, M.; Pereira, G. Adopting ecodesign practices: A case study of a midsized automotive supplier. Environ. Qual. Manag. 2009, 19, 7–22. [Google Scholar] [CrossRef]
- Ritter, T.; Lettl, C. The wider implications of business-model research. Long Range Plan. 2018, 51, 1–8. [Google Scholar] [CrossRef]
- Sosna, M.; Trevinyo-Rodríguez, R.; Velamuri, S. Business model innovation through trial-and-error learning: The Naturhouse case. Long Range Plan. 2010, 43, 383–407. [Google Scholar] [CrossRef]
- Smith, W.; Binns, A.; Tushman, M. Complex business models: Managing strategic paradoxes simultaneously. Long Range Plan. 2010, 43, 448–461. [Google Scholar] [CrossRef]
- Martinez, V.; Neely, A.; Velu, C.; Leinster-Evans, S.; Bisessar, D. Exploring the journey to services. Int. J. Prod. Econ. 2017, 192, 66–80. [Google Scholar] [CrossRef]
- Cavalcante, S.; Kesting, P.; Ulhøi, J. Business model dynamics and innovation: (Re)establishing the missing linkages. Manag. Decis. 2011, 49, 1327–1342. [Google Scholar] [CrossRef] [Green Version]
- Doz, Y.; Kosonen, M. Embedding strategic agility. Long Range Plan. 2010, 43, 370–382. [Google Scholar] [CrossRef]
- Laudien, S.; Daxböck, B. The influence of the industrial Internet of things on business model design: A qualitative-empirical analysis. Int. J. Innovat. Manag. 2016, 20, 1640014. [Google Scholar] [CrossRef]
- Karimi, J.; Walter, Z. The role of dynamic capabilities in responding to digital disruption: A factor-based study of the newspaper industry. J. Manag. Inf. Syst. 2015, 32, 39–81. [Google Scholar] [CrossRef]
- Foss, N.; Saebi, T. Fifteen years of research on business model innovation: How far have we come, and where should we go? J. Manag. 2017, 43, 200–227. [Google Scholar] [CrossRef] [Green Version]
- Foss, N.; Saebi, T. Business models and business model innovation: Between wicked and paradigmatic problems. Long Range Plan. 2018, 51, 9–21. [Google Scholar] [CrossRef]
- Gavetti, G.; Levinthal, D. Looking forward and looking backward: Cognitive and experiential search. Adm. Sci. Q. 2000, 45, 113–137. [Google Scholar] [CrossRef] [Green Version]
- Ghobakhloo, M.; Iranmanesh, M.; Grybauskas, A.; Vilkas, M.; Petraitė, M. Industry 4.0, innovation, and sustainable development: A systematic review and a roadmap to sustainable innovation. Bus. Strateg. Environ. 2021, 30, 4237–4257. [Google Scholar] [CrossRef]
- Klingenberg, C.; Borges, M.; Antunes, J., Jr. Industry 4.0 as a data-driven paradigm: A systematic literature review on technologies. J. Manuf. Technol. Manag. 2019, 32, 570–592. [Google Scholar] [CrossRef]
- Kadel, N.; Silva, J.; Ghobakhloo, M.; Ritter, A.; Silva, D.; Sellitto, M. Industry 4.0 technologies and sustainability challenges: A case study in the coal mining industry. Int. J. Prod. Lifecycle Manag. 2022, 14, 186–205. [Google Scholar]
- Abdulnour, S.; Baril, C.; Abdulnour, G.; Gamache, S. Implementation of Industry 4.0 Principles and Tools: Simulation and Case Study in a Manufacturing SME. Sustainability 2022, 14, 6336. [Google Scholar] [CrossRef]
- Ng, T.; Lau, S.; Ghobakhloo, M.; Fathi, M.; Liang, M. The application of industry 4.0 technological constituents for sustainable manufacturing: A content-centric review. Sustainability 2022, 14, 4327. [Google Scholar] [CrossRef]
- Agnusdei, G.; Coluccia, B.; Elia, V.; Miglietta, P. IoT technologies for wine supply chain traceability: Potential application in the Southern Apulia Region (Italy). Procedia Comput. Sci. 2022, 200, 1125–1134. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Singh, R.; Suman, R. Enabling flexible manufacturing system (FMS) through the applications of industry 4.0 technologies. Internet Things Cyber-Phys. Syst. 2022, 2, 49–62. [Google Scholar] [CrossRef]
- Agnusdei, L.; Del Prete, A. Additive manufacturing for sustainability: A systematic literature review. Sustain. Futures 2022, 100098. [Google Scholar] [CrossRef]
- Baierle, I.; Sellitto, M.; Frozza, R.; Schaefer, J.; Habekost, A. An artificial intelligence and knowledge-based system to support the decision-making process in sales. S. Afr. J. Ind. Eng. 2019, 30, 17–25. [Google Scholar] [CrossRef]
- Müller, A.; Nunes, M.; Maldaner, V.; Coradi, P.; Moraes, R.; Martens, S.; Leal, A.; Pereira, V.; Marin, C. Rice drying, storage, and processing: Effects of post-harvest operations on grain quality. Rice Sci. 2022, 29, 16–30. [Google Scholar] [CrossRef]
- Jagannathan, B.; Vijayakumar, P. The need for prevention-based food safety programs for fresh produce. Food Prot. Trends 2019, 39, 572–579. [Google Scholar]
- Faibil, D.; Agyemang, M.; Amponsah, O.; Gupta, H.; Kusi-Sarpong, S. Assessing drivers of post-harvest losses: Tangible and intangible resources’ perspective. Environ. Dev. Sustain. 2021, 23, 15785–15829. [Google Scholar] [CrossRef]
- Stathers, T.; Holcroft, D.; Kitinoja, L.; Mvumi, B.M.; English, A.; Omotilewa, O.; Kocher, M.; Auli, J.; Torero, M. A scoping review of interventions for crop postharvest loss reduction in sub-Saharan Africa and South Asia. Nat. Sustain. 2020, 3, 821–835. [Google Scholar] [CrossRef]
- Benyam, A.A.; Soma, T.; Fraser, E. Digital agricultural technologies for food loss and waste prevention and reduction: Global trends, adoption opportunities and barriers. J. Clean. Prod. 2021, 323, 129099. [Google Scholar] [CrossRef]
- Atungulu, G.G.; Thote, S.; Wilson, S. Dry matter loss for hybrid rough rice stored under reduced-oxygen conditions. Cereal Chem. 2017, 94, 497–501. [Google Scholar] [CrossRef]
- Suleiman, R.; Bern, C.; Brumm, T.; Rosentrater, K. Impact of moisture content and maize weevils on maize quality during hermetic and non-hermetic storage. J. Stored Prod. Res. 2018, 78, 1–10. [Google Scholar] [CrossRef]
- Meneghetti, V.; Biduski, B.; Tibola, C.; Junior, A.; Miranda, M.; Lima, M.; Guarienti, E.; Gutkoski, L. Evaluation of losses and quality maintenance of wheat during storage in a commercial unit in Brazil. J. Sci. Food Agric. 2022, 102, 1569–1575. [Google Scholar] [CrossRef]
- Lutz, É.; Coradi, P.; Jaques, L.; Carneiro, L.; Teodoro, L.; Teodoro, P.; Meneghetti, V.; Souza, G. Real-time equilibrium moisture content monitoring to predict grain quality of corn stored in silo and raffia bags. J. Food Process Eng. 2022, 45, e14076. [Google Scholar] [CrossRef]
- Anjos, F.; Rocha, L.; Silva, D.; Pacheco, R. Impacts of the Application of Virtual and Augmented Reality on Teaching-Learning Processes in Engineering Courses: A Systematic Literature Review About Learning and Satisfaction on Students. Int. J. Virtual Pers. Learn. Environ. 2022, 12, 1–19. [Google Scholar] [CrossRef]
- Sonwani, E.; Bansal, U.; Alroobaea, R.; Baqasah, A.; Hedabou, M. An Artificial Intelligence Approach Toward Food Spoilage Detection and Analysis. Front. Public Health 2022, 9, 2254. [Google Scholar] [CrossRef]
- Silva, F.; Baierle, I.; Correa, R.; Sellitto, M.; Peres, F.; Kipper, L. Open Innovation in Agribusiness: Barriers and Challenges in the Transition to Agriculture 4.0. Sustainability 2023, 15, 8562. [Google Scholar] [CrossRef]
- CONAB. Brazilian Grain Harvest. 2023. Available online: https://www.conab.gov.br/info-agro/safras/graos (accessed on 7 January 2023). (In Portuguese)
Opportunities | |||||
---|---|---|---|---|---|
Players | Financing | Commercialization | Operation and Logistics | Traceability | Assurance |
Producers | Credit cheap and fast | Increased reliability | Increased grain quality | Origin certified | Reduced cost |
Trading companies | Reduced default risk | Increased reliability | Increased grain quality | Origin certified | Reduced risk |
Agro-industry | Increased reliability | Increased grain quality | Origin certified | ||
Financial institutions | Reduced default risk | ||||
Suppliers | Reduced default risk | ||||
Insurance companies | Information | Reduced risks | |||
Food retailers | Increased food quality | Safer food | |||
Consumers | Increased food quality | Safer food |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schmidt, D.; Butturi, M.A.; Sellitto, M.A. Opportunities of Digital Transformation in Post-Harvest Activities: A Single Case Study of an Engineering Solutions Provider. AgriEngineering 2023, 5, 1226-1242. https://doi.org/10.3390/agriengineering5030078
Schmidt D, Butturi MA, Sellitto MA. Opportunities of Digital Transformation in Post-Harvest Activities: A Single Case Study of an Engineering Solutions Provider. AgriEngineering. 2023; 5(3):1226-1242. https://doi.org/10.3390/agriengineering5030078
Chicago/Turabian StyleSchmidt, Daniel, Maria Angela Butturi, and Miguel Afonso Sellitto. 2023. "Opportunities of Digital Transformation in Post-Harvest Activities: A Single Case Study of an Engineering Solutions Provider" AgriEngineering 5, no. 3: 1226-1242. https://doi.org/10.3390/agriengineering5030078
APA StyleSchmidt, D., Butturi, M. A., & Sellitto, M. A. (2023). Opportunities of Digital Transformation in Post-Harvest Activities: A Single Case Study of an Engineering Solutions Provider. AgriEngineering, 5(3), 1226-1242. https://doi.org/10.3390/agriengineering5030078