Potential Use of Phosphate-Solubilizing Bacteria in Soybean Culture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Conditions and Soil Preparation
2.2. Treatments and Experimental Conditions
2.3. Evaluation of Soybean Biometric and Productive Parameters
2.4. Experimental Design and Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Caneiro Filho, A.; Costa, K. A Expansão da Soja no Cerrado. Caminhos Para a Ocupação Territorial, Uso do Solo e Produção Sustentável. 2016. Available online: https://www.inputbrasil.org/wp-content/uploads/2016/11/A-Expans%C3%A3o-da-Soja-no-Cerrado_Agroicone_INPUT.pdf (accessed on 20 May 2023).
- Ronquim, C.C. Conceitos de Fertilidade do Solo e Manejo Adequado Para as Regiões Tropicais. 2010. Available online: https://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/882598 (accessed on 20 May 2023).
- Ceretta, C.A.; Silva, L.S.; Pavinato, A. Manejo da Adubação. In Fertilidade do Solo; Novais, R.F., Alvarez, V.H., Barros, N.F., Fontes, R.L., Cantarutti, R.B., Neves, J.C.L., Eds.; SCBS: Viçosa, Brazil, 2017; pp. 851–871. [Google Scholar]
- Alaylar, B.; Egamberdieva, D.; Gulluce, M.; Karadayi, M.; Arora, N.K. Integration of molecular tools in microbial phosphate solubilization research in agriculture perspective. World J. Microbiol. Biotechnol. 2020, 36, 93. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E. Fisiologia Vegetal, 3rd ed.; Artmed: Porto Alegre, Brazil, 2004; pp. 95–113. [Google Scholar]
- Cardoso, E.J.B.N.; Tsai, S.M.; Neves, M.C.P. Microbiologia do Solo; Sociedade Brasileira de Ciência do Solo: Campinas, Brazil, 2016. [Google Scholar]
- Santos, D.R. Fósforo orgânico do solo. In Fundamentos da Matéria Orgânica do Solo- Ecossistemas Tropicais e Subtropicais, 2nd ed.; Santos, G.A., Silva, L.S., Canellas, L.P., Camargo, F.O., Eds.; Metrópole: Porto Alegre, Brazil, 2008; pp. 65–82. [Google Scholar]
- Floss, E.L. Nutrientes e Desenvolvimento das Culturas. In Fisiologia das Plantas Cultivadas: O Estudo do que Está por Trás do que se vê; Universidade de Passo Fundo: Passo Fundo, Brazil, 2011; pp. 495–677. [Google Scholar]
- Moreira, F.M.S.E.; Siqueira, J. Microbiologia e Bioquímica do Solo; UFLA: Lavras, Brazil, 2006; 488p. [Google Scholar]
- Richardson, A.E.; Hadobas, P.A.; Hayes, J.E. Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate. Plant J. 2001, 25, 641–649. [Google Scholar] [CrossRef]
- Richardson, A.E.; Simpson, R.J. Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiol. 2011, 156, 989–996. [Google Scholar] [CrossRef] [PubMed]
- Batista, F.C.; Fernandes, T.A.; Abreu, C.S.; Oliveira, M.C.; Ribeira, V.P.; Gomes, E.A.; Lana, U.G.P.; Marriel, I.E.; Paiva, C.A.O. Potencial de Microrganismos Rizosféricos e Endofíticos de Milho em Solubilizar o Fosfato de Ferro e Produzir Sideróforos. 2018. Available online: https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/1096969/1/bol166.pdf (accessed on 20 May 2023).
- Mendes, I.C.; Reis Junior, F.B. Microrganismos e Disponibilidade de Fósforo (P) nos Solos: Uma Análise Crítica. 2003. Available online: https://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/568171 (accessed on 20 May 2023).
- Mohite, B. Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. J. Soil Sci. Plant Nutr. 2013, 13, 638–649. [Google Scholar] [CrossRef]
- Restrepo-Franco, G.M.; Marulanda-Moreno, S.; Fe-Pérez, Y.; Osa, A.D.; Lucia- Baldani, V.; Hernández-Rodríguez, A. Bacterias solubilizadoras de fosfato y sus potencialidades de uso en la promoción del crecimiento de cultivos de importancia económica. Rev. CENIC Ciênc. Biol. 2015, 46, 63–76. [Google Scholar]
- Prezotti, L.C.; Guarçoni, A. Guia de Interpretação de Análise de Solo e Foliar; Incaper: Vitória, Brazil, 2013; 104p.
- Comissão de Química e Fertilidade do Solo-RS/SC (CQFS). Manual de Calagem e Adubação Para os Estados do Rio Grande do Sul e de Santa Catarina; SBCS-NRS: Porto Alegre, Brazil, 2016. [Google Scholar]
- Embrapa Uva e Vinho. Agrometeorologia–Vacaria/RS. 2022. Available online: https://www.embrapa.br/uva-e-vinho/dados-meteorologicos/vacaria/-/asset_publisher/SL3WxNTudP12/content/2018-agrometeorologia-vacaria-resumo-anu-1/1355300?inheritRedirect=false&redirect=https%3A%2F%2Fwww.embrapa.br%2Fuva-e-vinho%2Fdados-meteorologicos%2Fvacaria%3Fp_p_id%3D101_INSTANCE_SL3WxNTudP12%26p_p_lifecycle%3D0%26p_p_state%3Dnormal%26p_p_mode%3Dview%26p_p_col_id%3Dcolumn-2%26p_p_col_pos%3D5%26p_p_col_count%3D7 (accessed on 20 May 2023).
- Seixas, C.D.S.; Neumaier, N.; Balbinot Junior, A.A.; Krzyzanowski, F.C.; Leite, R.M.V.B.C. (Eds.) Tecnologias de Produção de Soja; Embrapa Soja: Londrina, Brazil, 2020. [Google Scholar]
- Malavolta, E.; Vitti, G.C.; Oliveira, S.A. Avaliação do Estado Nutricional das Plantas: Princípios e Aplicações, 2nd ed.; Potafos: Piracicaba, Brazil, 1997; 319p. [Google Scholar]
- Araujo, F.F. Inoculação de sementes com Bacillus subtilis, formulado com farinha de ostras e desenvolvimento de milho, soja e algodão. Ciênc. Agrotecnol. 2008, 32, 456–462. [Google Scholar] [CrossRef]
- Dechen, A.R.; Nachtigall, G.R.; Carmello, Q.A.C.; Santos, L.A.; Sperandio, M.V.L. Micronutrientes. In Nutrição Mineral de Plantas, 2nd ed.; Fernandes, M.S., Souza, S.R., Santos, L.A., Eds.; Sociedade Brasileira de Ciência do Solo: Viçosa, Brazil, 2018; pp. 492–528. [Google Scholar]
- Silva, R.C.D.; Silva Junior, G.S.; Silva, C.S.; Santos, C.T.; Pelá, A. Nutrição com boro na soja em função da disponibilidade de água no solo. Sci. Agr. 2017, 18, 155–165. [Google Scholar] [CrossRef]
- Aquino, J.P.A.; Macedo Junior, F.B.; Antunes, J.E.L.; Figueiredo, M.V.B.; Alcântara Neto, F.; Araujo, A.S.F. Plant growth-promoting endophytic bacteria on maize and sorghum. Pesq. Agropec. Trop. 2019, 49, e56241. [Google Scholar] [CrossRef]
- Lima, F.F.; Nunes, L.A.P.L.; Figueiredo, M.V.B.; Araújo, F.F.; Lima, L.M.; Araújo, A.S.F. Bacillus subtilis e adubação nitrogenada na produtividade do milho. Rev. Bras. Ciênc. Agr. 2011, 6, 657–661. [Google Scholar] [CrossRef]
- Schwaab, E.F.; Aguiar, C.G. Interação de inoculantes nitrogenados com Bacillus megaterium e Bacillus subtilis em soja. Rev. Cult. Saber 2019, 12, 24–32. [Google Scholar]
- Paiva, C.A.O.; Marriel, I.E.; Gomes, E.A.; Cota, L.V.; Santos, F.C.; Sousa, S.M.; Lana, U.G.P.; Oliveira, M.C.; Mattos, B.B.; Alves, V.M.C.; et al. Recomendação Agronômica de Cepas de Bacillus subtilis e Bacillus megaterium na Cultura do Milho. 2020. Available online: https://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/1120362 (accessed on 20 May 2023).
- Elkoca, E.; Turan, M.; Donmez, F. Effects of single, dual and triple inoculations with Bacillus subtilis, Bacillus megaterium and Rhizobium leguminosarum bv. Phaseoli on nodulation, nutrient uptake, yield and yield parameters of common bean (Phaseolus vulgaris l. cv. ‘elkoca-05’). J. Plant Nutr. 2010, 33, 2104–2119. [Google Scholar] [CrossRef]
- Pinto, L.A.S.R.; Beutler, S.J.; Assunção, S.A.; Rossi, C.Q.; Guareschi, R.F.; Zandoná, S.R.; Santos, O.A.Q.; Pereira, M.G. Extração e quantificação das frações de fósforo orgânico no solo. Braz. J. Dev. 2020, 6, 34260–34278. [Google Scholar] [CrossRef]
- Santos, D.R.; Gatiboni, L.C.; Kaminski, J. Fatores que afetam a disponibilidade do fósforo e o manejo da adubação fosfatada em solos sob sistema plantio direto. Ciênc. Rural 2008, 38, 576–586. [Google Scholar] [CrossRef]
- Gatiboni, L.C. Disponibilidade de Formas de Fósforo do Solo às Plantas. Ph.D. Thesis, Universidade Federal de Santa Maria, Santa Maria, Brazil, 2003. [Google Scholar]
- Nogueirol, R.C.; Melo, W.J.; Bertoncini, E.I.; Alleoni, L.R.F. Effectiveness of extractants for bioavailable phosphorus in tropical soils amended with sewage sludge. Appl. Environ. Soil Sci. 2015, 2015, 720167. [Google Scholar] [CrossRef]
- Oliveira-Paiva, C.A.; Marriel, I.E.; Gomes, E.A.; Cota, L.V.; Santos, F.C.; Sousa, S.M.; Lana, U.G.P.; Oliveira, M.C.; Mattos, B.B.; Alves, V.M.C.; et al. Viabilidade Técnica e Econômica do Biomaphos® (Bacillus subtilis CNPMS B2084 e Bacillus megaterium CNPMS B119) nas Culturas de Milho e Soja. 2020. Available online: https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/1126348/1/Bol-210.pdf (accessed on 20 May 2023).
- Sessitsch, A.; Pfaffenbichler, N.; Mitter, B. Microbiome applications from lab to field: Facing complexity. Trends Plant Sci. 2019, 24, 194–198. [Google Scholar] [CrossRef]
- Kavamura, V.N.; Mendes, R.; Bargaz, A.; Mauchline, T.H. Defining the wheat microbiome: Towards microbiome-facilitated crop production. Comp. Struct. Biotechnol. J. 2021, 19, 1200–1213. [Google Scholar] [CrossRef] [PubMed]
Parameter | Unit | Result | Interpretation |
---|---|---|---|
pH | - | 6.5 | Weak acidity [16] |
H + Al | cmolc·dm−3 | 3.1 | Medium [16] |
Clay | % w/v | 66.0 | Class I [17] |
CTC (pH 7.0) | cmolc·dm−3 | 21.4 | High [17] |
MO | % w/v | 6.6 | High [17] |
Al | cmolc·dm−3 | <0.1 | Adequate [16] |
Ca | cmolc·dm−3 | 14.2 | High [17] |
Mg | cmolc·dm−3 | 3.4 | High [17] |
K | mg·dm−3 | 285.8 | Very high [17] |
P | mg·dm−3 | 5.8 | Low [17] |
S | mg·dm−3 | 10.8 | High [17] |
Zn | mg·dm−3 | 7.3 | High [17] |
Cu | mg·dm−3 | 16.3 | High [17] |
Mn | mg·dm−3 | 27.3 | High [17] |
B | mg·dm−3 | 0.2 | Medium [17] |
Saturation of bases | % | 86.1 | High [16] |
Treatments | N | Ca | Mg | P | K | S | |
---|---|---|---|---|---|---|---|
PSB | Phosphate Fertilization | g∙kg−1 | |||||
2019/2020 Harvest | |||||||
Without | Zero | 61.6 ± 1.6 ns | 9.9 ± 1.0 ns | 2.9 ± 0.1 ns | 4.4 ± 0.3 ns | 18.3 ± 4.1 ns | 4.0 ± 0.3 ns |
With | Zero | 56.5 ± 5.4 | 10.0 ± 0.4 | 2.8 ± 0.1 | 3.8 ± 0.1 | 16.2 ± 0.5 | 3.5 ± 0.5 |
With | 25% | 65.1 ± 7.4 | 8.7 ± 2.1 | 2.6 ± 0.5 | 3.7 ± 0.7 | 15.0 ± 2.7 | 3.4 ± 0.2 |
With | 50% | 65.1 ± 2.2 | 9.7 ± 0.3 | 2.9 ± 0.3 | 4.2 ± 0.3 | 16.7 ± 0.7 | 4.2 ± 0.6 |
With | 75% | 58.0 ± 5.0 | 11.0 ± 0.8 | 2.9 ± 0.2 | 4.1 ± 0.2 | 20.7 ± 2.2 | 3.7 ± 0.4 |
With | 100% | 61.7 ± 3.4 | 9.8 ± 0.5 | 2.7 ± 0.2 | 4.3 ± 0.3 | 14.5 ± 2.7 | 4.2 ± 0.4 |
Without | 100% | 59.3 ± 2.6 | 9.5 ± 0.7 | 2.5 ± 0.1 | 3.9 ± 0.4 | 16.2 ± 1.4 | 3.9 ± 0.4 |
Coefficient of variation (%) | 1.8 | 25.9 | 26.9 | 28.3 | 12.1 | 14.8 | |
2020/2021 Harvest | |||||||
Without | Zero | 56.7 ± 3.8 ns | 11.0 ± 1.3 ns | 2.9 ± 0.2 ns | 3.7 ± 0.5 ns | 16.7 ± 1.6 ns | 3.4 ± 0.4 ns |
With | Zero | 53.3 ± 2.6 | 10.5 ± 1.2 | 3.0 ± 0.3 | 3.5 ± 0.5 | 18.1 ± 2.0 | 3.1 ± 0.5 |
With | 25% | 55.0 ± 8.2 | 11.4 ± 1.6 | 2.9 ± 0.1 | 3.6 ± 0.4 | 17.9 ± 1.8 | 3.3 ± 0.2 |
With | 50% | 51.4 ± 1.9 | 10.4 ± 1.4 | 2.9 ± 0.3 | 3.2 ± 1.0 | 18.6 ± 2.0 | 3.0 ± 0.5 |
With | 75% | 51.9 ± 6.2 | 10.6 ± 1.7 | 3.0 ± 0.2 | 3.6 ± 0.7 | 18.9 ± 2.3 | 3.2 ± 0.2 |
With | 100% | 46.5 ± 11.1 | 10.9 ± 1.7 | 3.0 ± 0.2 | 4.1 ± 0.5 | 18.5 ± 1.8 | 3.2 ± 0.5 |
Without | 100% | 51.4 ± 3.0 | 9.7 ± 0.5 | 2.9 ± 0.1 | 3.8 ± 0.3 | 19.3 ± 0.8 | 3.2 ± 0.6 |
Coefficient of variation (%) | 26.4 | 2.6 | 8.4 | 36.3 | 6.63 | 18.6 |
Treatments | Zn | Cu | B | Mn | Fe | |
---|---|---|---|---|---|---|
PSB | Phosphate Fertilization | mg∙kg−1 | ||||
2019/2020 Harvest | ||||||
Without | Zero | 40.9 ± 9.6 ns | 11.5 ± 1.8 ns | 42.7 ± 3.8 ns | 130.3 ± 66.0 ns | 171.3 ± 16.5 ns |
With | Zero | 33.3 ± 2.4 | 10.6 ± 0.3 | 54.4 ± 1.7 | 108.1 ± 40.4 | 162.0 ± 10.6 |
With | 25% | 32.3 ± 7.5 | 9.3 ± 2.3 | 44.1 ± 8.4 | 97.0 ± 51.3 | 148.8 ± 32.1 |
With | 50% | 38.9 ± 2.8 | 11.1 ± 0.9 | 42.5 ± 11.0 | 122.5 ± 38.0 | 166.4 ± 15.0 |
With | 75% | 34.7 ± 5.2 | 10.8 ± 0.3 | 57.3 ± 4.7 | 111.3 ± 58.0 | 151.8 ± 21.8 |
With | 100% | 37.0 ± 3.2 | 10.7 ± 0.3 | 40.9 ± 8.2 | 108.8 ± 42.8 | 163.0 ± 7.8 |
Without | 100% | 34.2 ± 2.8 | 10.1 ± 0.4 | 50.4 ± 13.5 | 112.6 ± 27.9 | 148.4 ± 17.6 |
Coefficient of variation (%) | 2.8 | 21.0 | 31.4 | 6.0 | 19.8 | |
2020/2021 Harvest | ||||||
Without | Zero | 40.7 ± 6.9 ns | 10.3 ± 0.8 ns | 24.2 ± 6.7 ns | 116.6 ± 56.9 ns | 122.8 ± 10.1 ns |
With | Zero | 34.8 ± 2.6 | 10.5 ± 0.4 | 24.1 ± 4.5 | 101.2 ± 34.6 | 115.5 ± 4.9 |
With | 25% | 38.7 ± 6.7 | 11.3 ± 0.5 | 26.8 ± 1.9 | 103.6 ± 41.7 | 123.7 ± 14.1 |
With | 50% | 41.6 ± 2.0 | 10.9 ± 0.9 | 28.4 ± 1.5 | 114.4 ± 31.5 | 120.1 ± 5.1 |
With | 75% | 33.8 ± 4.8 | 10.2 ± 1.2 | 22.7 ± 4.2 | 85.8 ± 35.6 | 121.5 ± 28.6 |
With | 100% | 38.0 ± 5.1 | 11.5 ± 1.3 | 26.0 ± 1.0 | 91.5 ± 24.5 | 120.9 ± 16.6 |
Without | 100% | 39.0 ± 3.2 | 11.1 ± 1.0 | 26.9 ± 1.9 | 111.5 ± 26.9 | 120.7 ± 4.4 |
Coefficient of variation (%) | 1.4 | 8.7 | 29.2 | 3.2 | 2.1 |
Treatment | Vegetative Stage (V5) | Reproductive Stage (R1) | |||||
---|---|---|---|---|---|---|---|
PSB | Phosphate Fertilization | Chlorophyll A | Chlorophyll B | Total Chlorophyll | Chlorophyll A | Chlorophyll B | Total Chlorophyll |
2019/2020 Harvest | |||||||
Without | Zero | 41.3 ± 1.2 ns | 9.8 ± 2.0 ns | 51.1 ± 3.9 ns | 44.0 ± 1.6 ns | 9.8 ± 0.4 ns | 53.7 ± 3.0 ns |
With | Zero | 41.7 ± 1.2 | 9.1 ± 0.6 | 50.8 ± 2.8 | 45.0 ± 1.0 | 10.2 ± 0.6 | 55.2 ± 2.5 |
With | 25% | 44.2 ± 4.5 | 10.2 ± 1.6 | 52.5 ± 6.5 | 44.5 ± 1.9 | 9.8 ± 0.5 | 54.4 ± 3.4 |
With | 50% | 42.1 ± 2.2 | 10.1 ± 2.6 | 52.2 ± 5.2 | 43.8 ± 1.5 | 9.9 ± 0.7 | 53.7 ± 3.2 |
With | 75% | 43.7 ± 1.8 | 10.7 ± 2.9 | 55.4 ± 5.2 | 43.9 ± 0.7 | 9.9 ± 0.2 | 53.8 ± 2.4 |
With | 100% | 42.2 ± 3.0 | 9.6 ± 2.7 | 53.0 ± 5.7 | 44.8 ± 1.4 | 10.1 ± 0.4 | 54.9 ± 3.0 |
Without | 100% | 40.3 ± 5.8 | 9.1 ± 1.0 | 47.8 ± 7.3 | 44.7 ± 1.8 | 10.0 ± 0.6 | 54.7 ± 3.4 |
Coefficient of variation (%) | 1.03 | 3.27 | 10.59 | 0.55 | 1.03 | 0.53 | |
2020/2021 Harvest | |||||||
Without | Zero | 33.1 ± 3.6 ns | 8.3 ± 1.5 ns | 41.4 ± 5.1 ns | 44.6 ± 4.6 ns | 12.4 ± 2.7 ns | 56.7 ± 7.4 ns |
With | Zero | 34.8 ± 5.4 | 8.6 ± 1.4 | 43.4 ± 6.3 | 46.2 ± 4.0 | 12.5 ± 1.3 | 58.9 ± 5.3 |
With | 25% | 33.4 ± 4.7 | 8.2 ± 1.9 | 41.2 ± 6.2 | 44.8 ± 4.9 | 11.8 ± 2.9 | 56.1 ± 7.6 |
With | 50% | 35.3 ± 3.0 | 8.6 ± 1.1 | 43.9 ± 4.0 | 46.5 ± 3.4 | 12.8 ± 2.9 | 59.4 ± 6.0 |
With | 75% | 34.1 ± 4.1 | 8.1 ± 1.5 | 42.2 ± 5.2 | 46.9 ± 4.6 | 12.9 ± 2.9 | 58.9 ± 7.5 |
With | 100% | 33.7 ± 2.5 | 8.0 ± 1.2 | 41.8 ± 3.6 | 44.6 ± 4.4 | 11.9 ± 2.5 | 56.2 ± 6.9 |
Without | 100% | 35.8 ± 2.9 | 9.5 ± 1.0 | 46.0 ± 3.8 | 45.9 ± 4.5 | 12.5 ± 2.1 | 58.4 ± 6.4 |
Coefficient of variation (%) | 0.44 | 5.06 | 2.27 | 11.44 | 7.83 | 10.03 |
Treatment | Root Length | Plant Height | |
---|---|---|---|
PSB | Phosphate Fertilization | cm | |
2019/2020 Harvest | |||
Without | Zero | 14.98 ± 0.41 ns | 69.59 ± 2.25 ns |
With | Zero | 15.42 ± 0.76 | 66.87 ± 2.78 |
With | 25% | 15.60 ± 1.09 | 69.86 ± 2.53 |
With | 50% | 16.01 ± 1.81 | 69.32 ± 3.03 |
With | 75% | 15.11 ± 1.10 | 67.75 ± 3.98 |
With | 100% | 15.50 ± 0.63 | 70.58 ± 2.93 |
Without | 100% | 15.44 ± 1.11 | 69.37 ± 4.58 |
Coefficient of variation (%) | 2.51 | 11.28 | |
2020/2021 Harvest | |||
Without | Zero | 13.00 ± 1.59 ns | 89.76 ± 5.39 ns |
With | Zero | 12.99 ± 0.94 | 91.85 ± 6.34 |
With | 25% | 13.80 ± 1.01 | 96.39 ± 4.66 |
With | 50% | 13.15 ± 0.97 | 93.16 ± 3.01 |
With | 75% | 13.10 ± 1.11 | 90.08 ± 5.93 |
With | 100% | 13.66 ± 1.35 | 92.85 ± 6.18 |
Without | 100% | 12.32 ± 0.76 | 95.51 ± 5.20 |
Coefficient of variation (%) | 2.49 | 14.17 |
Treatment | Grain Productivity | Mass of 1000 Grains | Pods per Plant | Grains per Pod | |
---|---|---|---|---|---|
PSB | Phosphate Fertilization | kg∙ha−1 | g | Number | |
2019/2020 Harvest | |||||
Without | Zero | 3708 ± 74 ns | 177.6 ± 3.2 ns | 37.2 ± 1.5 ns | 2.4 ± 0.1 ns |
With | Zero | 3501 ± 102 | 178.1 ± 3.8 | 35.8 ± 5.2 | 2.3 ± 0.1 |
With | 25% | 3635 ± 220 | 181.0 ± 5.0 | 34.6 ± 2.4 | 2.3 ± 0.1 |
With | 50% | 3672 ± 237 | 180.3 ± 3.9 | 40.0 ± 6.4 | 2.3 ± 0.2 |
With | 75% | 3621 ± 117 | 180.9 ± 2.8 | 38.4 ± 4.2 | 2.3 ± 0.1 |
With | 100% | 3577 ± 98 | 177.6 ± 2.9 | 36.2 ± 2.8 | 2.4 ± 0.1 |
Without | 100% | 3518 ± 210 | 177.7 ± 3.6 | 37.4 ± 3.0 | 2.3 ± 0.2 |
Coefficient of variation (%) | 0.69 | 0.35 | 2.67 | 7.23 | |
2020/2021 Harvest | |||||
Without | Zero | 3286 ± 569 ns | 172.4 ± 10.8 ns | 47.0 ± 5.7 ns | 2.2 ± 0.1 ns |
With | Zero | 3134 ± 242 | 166.8 ± 7.0 | 49.1 ± 2.7 | 2.3 ± 0.1 |
With | 25% | 3197 ± 446 | 168.7 ± 10.2 | 46.8 ± 7.9 | 2.3 ± 0.1 |
With | 50% | 3044 ± 547 | 174.8 ± 8.3 | 46.7 ± 6.0 | 2.2 ± 0.2 |
With | 75% | 3167 ± 381 | 171.5 ± 12.7 | 53.3 ± 13.7 | 2.2 ± 0.2 |
With | 100% | 3164 ± 583 | 172.4 ± 12.2 | 51.3 ± 5.7 | 2.3 ± 0.1 |
Without | 100% | 2867 ± 671 | 171.4 ± 4.5 | 43.5 ± 5.7 | 2.2 ± 0.2 |
Coefficient of variation (%) | 1.75 | 1.05 | 2.68 | 16.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silvestrini, G.R.; da Rosa, E.J.; Corrêa, H.C.; Dal Magro, T.; Silvestre, W.P.; Pauletti, G.F.; Conte, E.D. Potential Use of Phosphate-Solubilizing Bacteria in Soybean Culture. AgriEngineering 2023, 5, 1544-1554. https://doi.org/10.3390/agriengineering5030095
Silvestrini GR, da Rosa EJ, Corrêa HC, Dal Magro T, Silvestre WP, Pauletti GF, Conte ED. Potential Use of Phosphate-Solubilizing Bacteria in Soybean Culture. AgriEngineering. 2023; 5(3):1544-1554. https://doi.org/10.3390/agriengineering5030095
Chicago/Turabian StyleSilvestrini, Gabriel Rieth, Elton José da Rosa, Henrique Cunha Corrêa, Taísa Dal Magro, Wendel Paulo Silvestre, Gabriel Fernandes Pauletti, and Elaine Damiani Conte. 2023. "Potential Use of Phosphate-Solubilizing Bacteria in Soybean Culture" AgriEngineering 5, no. 3: 1544-1554. https://doi.org/10.3390/agriengineering5030095
APA StyleSilvestrini, G. R., da Rosa, E. J., Corrêa, H. C., Dal Magro, T., Silvestre, W. P., Pauletti, G. F., & Conte, E. D. (2023). Potential Use of Phosphate-Solubilizing Bacteria in Soybean Culture. AgriEngineering, 5(3), 1544-1554. https://doi.org/10.3390/agriengineering5030095