Performance Evaluation of a Wet Medium Made of Mangosteen Peels for a Direct Evaporative Cooling System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Experimental Procedure
2.3. Performance Evaluation
2.3.1. Temperature Drop
2.3.2. Saturation Effectiveness
2.3.3. Cooling Capacity
2.3.4. Coefficient of Performance
2.4. Uncertainty Analysis
3. Results and Discussion
3.1. Verification of Steady State Condition
3.2. Cooling Performance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pezzutto, S.; Quaglini, G.; Riviere, P.; Kranzl, L.; Novelli, A.; Zambito, A.; Wilczynski, E. Screening of cooling technologies in Europe: Alternatives to vapour compression and possible market developments. Sustainability 2022, 14, 2971. [Google Scholar] [CrossRef]
- Rafique, M.M.; Gandhidasan, P.; Rehman, S.; Al-Hadhrami, L.M. A review on desiccant based evaporative cooling systems. Renew. Sustain. Energy Rev. 2015, 45, 145–159. [Google Scholar] [CrossRef]
- Fong, K.; Lee, C. Solar desiccant cooling system for hot and humid region–A new perspective and investigation. Sol. Energy 2020, 195, 677–684. [Google Scholar] [CrossRef]
- Pandelidis, D.; Niemierka, E.; Pacak, A.; Jadwiszczak, P.; Cichoń, A.; Drąg, P.; Worek, W.; Cetin, S. Performance study of a novel dew point evaporative cooler in the climate of central Europe using building simulation tools. Build. Environ. 2020, 181, 107101. [Google Scholar] [CrossRef]
- Kashif, M.; Niaz, H.; Sultan, M.; Miyazaki, T.; Feng, Y.; Usman, M.; Shahzad, M.W.; Niaz, Y.; Waqas, M.M.; Ali, I. Study on desiccant and evaporative cooling systems for livestock thermal comfort: Theory and experiments. Energies 2020, 13, 2675. [Google Scholar] [CrossRef]
- Ghoulem, M.; El Moueddeb, K.; Nehdi, E.; Boukhanouf, R.; Calautit, J.K. Greenhouse design and cooling technologies for sustainable food cultivation in hot climates: Review of current practice and future status. Biosyst. Eng. 2019, 183, 121–150. [Google Scholar] [CrossRef]
- Nkolisa, N.; Magwaza, L.S.; Workneh, T.S.; Chimphango, A. Evaluating evaporative cooling system as an energy-free and cost-effective method for postharvest storage of tomatoes (Solanum lycopersicum L.) for smallholder farmers. Sci. Hortic. 2018, 241, 131–143. [Google Scholar] [CrossRef]
- Ambuko, J.; Wanjiru, F.; Chemining’wa, G.; Owino, W.; Mwachoni, E. Preservation of postharvest quality of leafy amaranth (Amaranthus spp.) vegetables using evaporative cooling. J. Food Qual. 2017, 2017, 5303156. [Google Scholar] [CrossRef]
- Kipruto, K.M. Effect of near infrared reflection and evaporative cooling on quality of mangoes. Agric. Eng. Int. CIGR J. 2017, 19, 162–168. [Google Scholar]
- Samira, A.; Woldetsadik, K.; Workneh, T.S. Postharvest quality and shelf life of some hot pepper varieties. J. Food Sci. Technol. 2013, 50, 842–855. [Google Scholar] [CrossRef]
- Babaremu, K.; Adekanye, T.; Okokpujie, I.; Fayomi, J.; Atiba, O. The significance of active evaporative cooling system in the shelf life enhancement of vegetables (red and green tomatoes) for minimizing post-harvest losses. Procedia Manuf. 2019, 35, 1256–1261. [Google Scholar] [CrossRef]
- Sibanda, S.; Workneh, T.S. Effects of indirect air cooling combined with direct evaporative cooling on the quality of stored tomato fruit. CyTA-J. Food 2019, 17, 603–612. [Google Scholar] [CrossRef]
- Yang, Y.; Cui, G.; Lan, C.Q. Developments in evaporative cooling and enhanced evaporative cooling-A review. Renew. Sustain. Energy Rev. 2019, 113, 109230. [Google Scholar] [CrossRef]
- Xuan, Y.; Xiao, F.; Niu, X.; Huang, X.; Wang, S. Research and application of evaporative cooling in China: A review (I)–Research. Renew. Sustain. Energy Rev. 2012, 16, 3535–3546. [Google Scholar] [CrossRef]
- Naveenprabhu, V.; Suresh, M. Performance enhancement studies on evaporative cooling using volumetric heat and mass transfer coefficients. Numer. Heat Transf. Part A Appl. 2020, 78, 504–523. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, J.; Siyag, J.; Rambhatla, S. Potential alternative materials used in evaporative coolers for sustainable energy applications: A review. Int. J. Air-Cond. Refrig. 2020, 28, 2030006. [Google Scholar] [CrossRef]
- Tejero-González, A.; Franco-Salas, A. Optimal operation of evaporative cooling pads: A review. Renew. Sustain. Energy Rev. 2021, 151, 111632. [Google Scholar] [CrossRef]
- Franco-Salas, A.; Peña-Fernández, A.; Valera-Martínez, D.L. Refrigeration capacity and effect of ageing on the operation of cellulose evaporative cooling pads, by wind tunnel analysis. Int. J. Environ. Res. Public Health 2019, 16, 4690. [Google Scholar] [CrossRef]
- Nada, S.; Fouda, A.; Mahmoud, M.; Elattar, H. Experimental investigation of energy and exergy performance of a direct evaporative cooler using a new pad type. Energy Build. 2019, 203, 109449. [Google Scholar] [CrossRef]
- Yan, M.; He, S.; Li, N.; Huang, X.; Gao, M.; Xu, M.; Miao, J.; Lu, Y.; Hooman, K.; Che, J. Experimental investigation on a novel arrangement of wet medium for evaporative cooling of air. Int. J. Refrig. 2021, 124, 64–74. [Google Scholar] [CrossRef]
- Doğramacı, P.A.; Aydın, D. Comparative experimental investigation of novel organic materials for direct evaporative cooling applications in hot-dry climate. J. Build. Eng. 2020, 30, 101240. [Google Scholar] [CrossRef]
- Jain, J.; Hindoliya, D. Correlations for saturation efficiency of evaporative cooling pads. J. Inst. Eng. India Ser. C 2014, 95, 5–10. [Google Scholar] [CrossRef]
- Lotfizadeh, H.; Razzaghi, H.; Layeghi, M. Experimental performance analysis of a solar evaporative cooler with three different types of pads. J. Renew. Sustain. Energy 2013, 5, 063113. [Google Scholar] [CrossRef]
- Bishoyi, D.; Sudhakar, K. Experimental performance of a direct evaporative cooler in composite climate of India. Energy Build. 2017, 153, 190–200. [Google Scholar] [CrossRef]
- Al-Sulaiman, F. Evaluation of the performance of local fibers in evaporative cooling. Energy Convers. Manag. 2002, 43, 2267–2273. [Google Scholar] [CrossRef]
- Liao, C.M.; Singh, S.; Wang, T.S. Characterizing the performance of alternative evaporative cooling pad media in thermal environmental control applications. J. Environ. Sci. Health Part A 1998, 33, 1391–1417. [Google Scholar] [CrossRef]
- Rawangkul, R.; Khedari, J.; Hirunlabh, J.; Zeghmati, B. Performance analysis of a new sustainable evaporative cooling pad made from coconut coir. Int. J. Sustain. Eng. 2008, 1, 117–131. [Google Scholar] [CrossRef]
- Alam, M.F.; Sazidy, A.S.; Kabir, A.; Mridha, G.; Litu, N.A.; Rahman, M.A. An experimental study on the design, performance and suitability of evaporative cooling system using different indigenous materials. In Proceedings of the 7th Bsme International Conference on Thermal Engineering, Dhaka, Bangladesh, 22–24 December 2016; p. 020075. [Google Scholar]
- Suranjan Salins, S.; Reddy, S.K.; Kumar, S. Experimental investigation on use of alternative innovative materials for sustainable cooling applications. Int. J. Sustain. Eng. 2021, 14, 1207–1217. [Google Scholar] [CrossRef]
- Khosravi, N.; Aydin, D.; Nejhad, M.K.; Dogramaci, P.A. Comparative performance analysis of direct and desiccant assisted evaporative cooling systems using novel candidate materials. Energy Convers. Manag. 2020, 221, 113167. [Google Scholar] [CrossRef]
- Ndukwu, M.C.; Manuwa, S.I. Techno-economic assessment for viability of some waste as cooling pads in evaporative cooling system. Int. J. Agric. Biol. Eng. 2015, 8, 151–158. [Google Scholar] [CrossRef]
- de Melo Júnior, J.C.F.; Bamberg, J.V.M.; Machado, N.S.; Caldas, E.N.G.; Rodrigues, M.S. Evaporative cooling efficiency of pads consisting of vegetable loofah. Comun. Sci. 2019, 10, 38–44. [Google Scholar] [CrossRef]
- Soponpongpipat, N.; Kositchaimongkol, S. Recycled high-density polyethylene and rice husk as a wetted pad in evaporative cooling system. Am. J. Appl. Sci. 2011, 8, 186–191. [Google Scholar] [CrossRef]
- Ahmed, E.M.; Abaas, O.; Ahmed, M.; Ismail, M.R. Performance evaluation of three different types of local evaporative cooling pads in greenhouses in Sudan. Saudi J. Biol. Sci. 2011, 18, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Ubonwat, J. A Feasibility Study of Using Water Hyacinth as Wetted Media in Evaporative Cooling System. Master’s Thesis, King Mongkut’s Institute of Technology Thonburi, Bangkok, Thailand, 2001. [Google Scholar]
- Choodej, S.; Koopklang, K.; Raksat, A.; Chuaypen, N.; Pudhom, K. Bioactive xanthones, benzophenones and biphenyls from mangosteen root with potential anti-migration against hepatocellular carcinoma cells. Sci. Rep. 2022, 12, 8605. [Google Scholar] [CrossRef] [PubMed]
- Aizat, W.M.; Ahmad-Hashim, F.H.; Jaafar, S.N.S. Valorization of mangosteen,“The Queen of Fruits,” and new advances in postharvest and in food and engineering applications: A review. J. Adv. Res. 2019, 20, 61–70. [Google Scholar] [CrossRef]
- Office of Agricultural Economics. Agricultural Statistics of Thailand 2020; Ministry of Agriculture & Cooperatives: Bangkok, Thailand, 2020. [Google Scholar]
- Nasrullah, A.; Saad, B.; Bhat, A.; Khan, A.S.; Danish, M.; Isa, M.H.; Naeem, A. Mangosteen peel waste as a sustainable precursor for high surface area mesoporous activated carbon: Characterization and application for methylene blue removal. J. Clean. Prod. 2019, 211, 1190–1200. [Google Scholar] [CrossRef]
- Laknizi, A.; Ben Abdellah, A.; Faqir, M.; Essadiqi, E.; Dhimdi, S. Performance characterization of a direct evaporative cooling pad based on pottery material. Int. J. Sustain. Eng. 2021, 14, 46–56. [Google Scholar] [CrossRef]
- Yan, M.; He, S.; Gao, M.; Xu, M.; Miao, J.; Huang, X.; Hooman, K. Comparative study on the cooling performance of evaporative cooling systems using seawater and freshwater. Int. J. Refrig. 2021, 121, 23–32. [Google Scholar] [CrossRef]
- Velasco-Gómez, E.; Tejero-González, A.; Jorge-Rico, J.; Rey-Martínez, F.J. Experimental investigation of the potential of a new fabric-based evaporative cooling pad. Sustainability 2020, 12, 7070. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, H.; Ma, S. Investigation on indirect evaporative cooling system integrated with liquid dehumidification. Energy Build. 2021, 249, 111179. [Google Scholar] [CrossRef]
- Kumar, S.; Salins, S.S.; Reddy, S.K.; Nair, P.S. Comparative performance analysis of a static & dynamic evaporative cooling pads for varied climatic conditions. Energy 2021, 233, 121136. [Google Scholar] [CrossRef]
- Stull, R. Wet-bulb temperature from relative humidity and air temperature. J. Appl. Meteorol. Climatol. 2011, 50, 2267–2269. [Google Scholar] [CrossRef]
- Gatley, D.P. Understanding Psychrometrics, 3rd ed.; ASHRAE: Atlanta, GA, USA, 2013; p. 259. [Google Scholar]
- Sensirion. Introduction to Humidity: Basic Principles on Physics of Water Vapor; Sensirion, The Sensor Company: Chicago, IL, USA, 2009. [Google Scholar]
- Moffat, R.J. Describing the uncertainties in experimental results. Exp. Therm. Fluid Sci. 1988, 1, 3–17. [Google Scholar] [CrossRef]
- Taylor, J. Introduction to Error Analysis, the Study of Uncertainties in Physical Measurements; University Science Books: Dulles, VA, USA, 1997. [Google Scholar]
- Liao, C.-M.; Chiu, K.-H. Wind tunnel modeling the system performance of alternative evaporative cooling pads in Taiwan region. Build. Environ. 2002, 37, 177–187. [Google Scholar] [CrossRef]
- Coker, A.K. 4—FLUID FLOW. In Ludwig’s Applied Process Design for Chemical and Petrochemical Plants, 4th ed.; Coker, A.K., Ed.; Gulf Professional Publishing: Burlington, VT, USA, 2007; pp. 133–302. [Google Scholar] [CrossRef]
- Laknizi, A.; Mahdaoui, M.; Abdellah, A.B.; Anoune, K.; Bakhouya, M.; Ezbakhe, H. Performance analysis and optimal parameters of a direct evaporative pad cooling system under the climate conditions of Morocco. Case Stud. Therm. Eng. 2019, 13, 100362. [Google Scholar] [CrossRef]
- Gunhan, T.; Demir, V.; Yagcioglu, A. Evaluation of the suitability of some local materials as cooling pads. Biosyst. Eng. 2007, 96, 369–377. [Google Scholar] [CrossRef]
- Chen, X.; Su, Y.; Aydin, D.; Ding, Y.; Zhang, S.; Reay, D.; Riffat, S. A novel evaporative cooling system with a polymer hollow fibre spindle. Appl. Therm. Eng. 2018, 132, 665–675. [Google Scholar] [CrossRef]
Material | Dimensions 1 | Air Velocity/ Flow Rate | Saturation Effectiveness | Cooling Capacity | Country | Ref. |
---|---|---|---|---|---|---|
Aspen fibers | 17 × 17 × 60 | 1.4 m/s | 71.6% | - | India | [22] |
40 × 40 × 7.5 | 5.44 m3/min | 67–75% | - | Iran | [23] | |
87 × 61 × 2.5 | 1.4 m/s | 52–67% | 0.5–1.6 kW | India | [24] | |
31 × 30 × 5 | 2.4 m/s | 49.5% | - | Saudi Arabia | [25] | |
Bulrush | N.P. | 0.1–1.2 m/s | 19–35% | 0.06–0.42 kW | Turkey | [21] |
Coconut fibers | 30 × 30 × 15 | 0.5–4.0 m/s | 83.5–93.8 | 0.06–0.53 W | China | [26] |
10 × 13.5 × 7 | 1.9–2.8 m/s | 44.1–51.5% | - | Thailand | [27] | |
17 × 17 × 60 | 1.4 m/s | 69.4% | - | India | [22] | |
92 × 66 × 10 | 3.6–5.6 m/s | 85% | - | Bangladesh | [28] | |
10 × 10 × 10 | 0.062–0.083 kg/s | 35–70% | 0.1–0.5 kW | India | [29] | |
Eucalyptus fibers | 24 * × 10 | 0.03–0.08 kg/s | 78% | 0.81 | Turkey | [30] |
N.P. | 0.1–1.2 m/s | 23–76% | 0.12–0.68 kW | Turkey | [21] | |
Jute fibers | 31 × 30 × 5 | 2.4 m/s | 62.1% | - | Saudi Arabia | [25] |
30 × 40 × 6 | 3.0–4.5 m/s | 17.4–93.8 | - | Nigeria | [31] | |
Khus fibers | 17 × 17 × 60 | 1.4 m/s | 64.2% | - | India | [22] |
Luffa fibers | 31 × 30 × 5 | 2.4 m/s | 55.1% | - | Saudi Arabia | [25] |
96 × 96 × 12.5 | 0.77 m/s | 57.0% | - | Brazil | [32] | |
Palash fibers | 17 × 17 × 60 | 1.4 m/s | 81.0% | - | India | [22] |
Palm fibers | 31 × 30 × 5 | 2.4 m/s | 38.9% | - | Saudi Arabia | [25] |
30 × 40 × 6 | 3.0–4.5 m/s | 49.0–98.8% | - | Nigeria | [31] | |
Rice husk | 53 × 53 × 5.1 | 1–3 m/s | 55.4–61.9% | - | Thailand | [33] |
Sackcloth | 92 × 66 × 10 | 3.6–5.6 m/s | 69% | - | Bangladesh | [28] |
Straw fiber | 600 × 200 × 10 | N.P. | 76% | - | Sudan | [34] |
Water hyacinth | 20 × 50 × 5 | 1.5–3.6 m/s | 20–40% | - | Thailand | [35] |
Wood Chips | 24 * × 10 | 0.03–0.08 kg/s | 81% | 0.90 kW | Turkey | [30] |
10 × 10 × 10 | 0.062–0.083 kg/s | 50–80% | 0.2–0.5 kW | India | [29] | |
600 × 200 × 10 | N.P. | 90% | - | Sudan | [34] |
Parameter | Instrument | Accuracy | Measuring Range |
---|---|---|---|
Air velocity | Hot-wire anemometer (Testo 405i) | ±0.1 m/s ±0.3 m/s | 0 to 2 m/s 2 to 15 m/s |
Differential pressure | Manometer (Testo 510i) | ±0.02 kPa | −15 to +15 kPa |
Electrical power consumption | Wattmeter (Intertek) | ±2% of measured data | 0 to 3680 W |
Temperature and relative humidity | Thermo-hygrometer (Testo 176H1) | ±0.2 °C ±2.0% RH | −20 °C to +70 °C 20% to 95% |
Thermo-hygrometer (Testo 174H) | ±0.5 °C ±3.0% RH | −20 to +70 °C 2 to 98% |
1 | 0.151977 |
2 | 8.313659 |
3 | 1.676331 |
4 | 0.00391838 |
5 | 0.023101 |
6 | 4.686035 |
Parameter | Value | Unit |
---|---|---|
1.006 | kJ/(kg·°C) | |
1.84 | kJ/(kg·°C) | |
28.966 | kg/kmol | |
18.015268 | kg/kmol | |
101.325 | kPa | |
8.314472 | kJ/(kmol·K) | |
0.6112 | kPa | |
17.62 | - | |
243.12 | °C |
Parameter | Maximum | Minimum |
---|---|---|
11.8 | 5.8 | |
11.8 | 7.6 | |
18.2 | 8.7 | |
18.2 | 8.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaomuang, N.; Nuangjamnong, T.; Rakmae, S. Performance Evaluation of a Wet Medium Made of Mangosteen Peels for a Direct Evaporative Cooling System. AgriEngineering 2023, 5, 1865-1878. https://doi.org/10.3390/agriengineering5040114
Chaomuang N, Nuangjamnong T, Rakmae S. Performance Evaluation of a Wet Medium Made of Mangosteen Peels for a Direct Evaporative Cooling System. AgriEngineering. 2023; 5(4):1865-1878. https://doi.org/10.3390/agriengineering5040114
Chicago/Turabian StyleChaomuang, Nattawut, Thanut Nuangjamnong, and Samak Rakmae. 2023. "Performance Evaluation of a Wet Medium Made of Mangosteen Peels for a Direct Evaporative Cooling System" AgriEngineering 5, no. 4: 1865-1878. https://doi.org/10.3390/agriengineering5040114
APA StyleChaomuang, N., Nuangjamnong, T., & Rakmae, S. (2023). Performance Evaluation of a Wet Medium Made of Mangosteen Peels for a Direct Evaporative Cooling System. AgriEngineering, 5(4), 1865-1878. https://doi.org/10.3390/agriengineering5040114