Calibration and Implementation of a Dynamic Energy Balance Model to Estimate the Temperature in a Plastic-Covered Colombian Greenhouse
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Greenhouse
2.2. Dynamic Model of Energy Balance
2.3. Parameters of the Experimental Greenhouse
2.4. Climate and Microclimate Data Collection
2.5. Model Calibration and Implementation
3. Results and Discussion
3.1. Behavior of the Input Variables
3.1.1. Temperature
3.1.2. Solar Radiation
3.1.3. Wind Speed
3.1.4. Relative Humidity
3.2. Model Calibration
3.3. Simulation of Temperature Behavior Inside the Greenhouse with Calibration Data
3.4. Temperature Behavior in the Model Implementation Phase
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Horti Daily. Estadísticas Mundiales de Hortalizas de Invernadero Actualizadas Para. 2019. Available online: https://www.hortidaily.com/article/9057219/world-greenhouse-vegetable-statistics-updated-for-2019/ (accessed on 21 January 2019).
- Eshun, J.F.; Apori, S.O.; Wereko, E. Greenhouse Gaseous Emission and Energy Analysis in Rice Production Systems in Ghana. Afri. Crop Sci. J. 2013, 21, 119–126. [Google Scholar]
- Cai, W.; Wei, R.; Xu, L.; Ding, X. A Method for Modelling Greenhouse Temperature Using Gradient Boost Decision Tree. Inf. Process. Agric. 2022, 9, 343–354. [Google Scholar] [CrossRef]
- Diaz, D.C.; Bojacá, C.R.; Schrevens, E. Modeling the Suitability of the Traditional Plastic Greenhouse for Tomato Production across Colombian Regions. Acta Hortic. 2018, 1205, 857–864. [Google Scholar] [CrossRef]
- Bojacá, C.R.; Gil, R.; Cooman, A. Use of Geostatistical and Crop Growth Modelling to Assess the Variability of Greenhouse Tomato Yield Caused by Spatial Temperature Variations. Comput. Electron. Agric. 2009, 65, 219–227. [Google Scholar] [CrossRef]
- Fatnassi, H.; Pizzol, J.; Senoussi, R.; Biondi, A.; Desneux, N.; Poncet, C.; Boulard, T. Within-Crop Air Temperature and Humidity Outcomes on Spatio-Temporal Distribution of the Key Rose Pest Frankliniella occidentalis. PLoS ONE 2015, 10, e0126655. [Google Scholar] [CrossRef] [PubMed]
- Villagran, E.; Ramirez, R.; Rodriguez, A.; Pacheco, R.L.; Jaramillo, J. Simulation of the Thermal and Aerodynamic Behavior of an Established Screenhouse under Warm Tropical Climate Conditions: A Numerical Approach. Int. J. Sustain. Dev. Plan. 2020, 15, 487–499. [Google Scholar] [CrossRef]
- Bournet, P.E.; Boulard, T. Effect of Ventilator Configuration on the Distributed Climate of Greenhouses: A Review of Experimental and CFD Studies. Comput. Electron. Agric. 2010, 74, 195–217. [Google Scholar] [CrossRef]
- Villagran, E.; Bojacá, C.; Akrami, M. Contribution to the Sustainability of Agricultural Production in Greenhouses Built on Slope Soils: A Numerical Study of the Microclimatic Behavior of a Typical Colombian Structure. Sustainability 2021, 13, 4748. [Google Scholar] [CrossRef]
- Katzin, D.; van Henten, E.J.; van Mourik, S. Process-Based Greenhouse Climate Models: Genealogy, Current Status, and Future Directions. Agric. Syst. 2022, 198, 103388. [Google Scholar] [CrossRef]
- Rasheed, A.; Kim, H.T.; Lee, H.W. Modeling-Based Energy Performance Assessment and Validation of Air-to-Water Heat Pump System Integrated with Multi-Span Greenhouse on Cooling Mode. Agronomy 2022, 12, 1374. [Google Scholar] [CrossRef]
- Lee, C.-G.; Cho, L.-H.; Kim, S.-J.; Park, S.-Y.; Kim, D.-H. Prediction Model for the Internal Temperature of a Greenhouse with a Water-to-Water Heat Pump Using a Pellet Boiler as a Heat Source Using Building Energy Simulation. Energies 2022, 15, 5677. [Google Scholar] [CrossRef]
- Hongkang, W.; Li, L.; Yong, W.; Fanjia, M.; Haihua, W.; Sigrimis, N.A. Recurrent Neural Network Model for Prediction of Microclimate in Solar Greenhouse. IFAC-PapersOnLine 2018, 51, 790–795. [Google Scholar] [CrossRef]
- Ahamed, M.S.; Guo, H.; Tanino, K. Development of a Thermal Model for Simulation of Supplemental Heating Requirements in Chinese-Style Solar Greenhouses. Comput. Electron. Agric. 2018, 150, 235–244. [Google Scholar] [CrossRef]
- Choab, N.; Allouhi, A.; El Maakoul, A.; Kousksou, T.; Saadeddine, S.; Jamil, A. Review on Greenhouse Microclimate and Application: Design Parameters, Thermal Modeling and Simulation, Climate Controlling Technologies. Sol. Energy 2019, 191, 109–137. [Google Scholar] [CrossRef]
- Businger, J.A. The Glasshouse (Greenhouse) Climate. In Physics of Plant Environment; Van Wijk, W.R., Ed.; North-Holland Publishing: Amsterdam, The Netherlands, 1963. [Google Scholar]
- Gary, C.; Jones, J.W.; Tchamitchian, M. Crop Modelling in Horticulture: State of the Art. Sci. Hortic. 1998, 74, 3–20. [Google Scholar] [CrossRef]
- Salinas-Velandia, D.A.; Romero-Perdomo, F.; Numa-Vergel, S.; Villagrán, E.; Donado-Godoy, P.; Galindo-Pacheco, J.R. Insights into Circular Horticulture: Knowledge Diffusion, Resource Circulation, One Health Approach, and Greenhouse Technologies. Int. J. Environ. Res. Public Health 2022, 19, 12053. [Google Scholar] [CrossRef] [PubMed]
- Marcelis, L.F.M.; Costa, J.M.; Heuvelink, E. Achieving Sustainable Greenhouse Production: Present Status, Recent Advances and Future Developments. Achiev. Sustain. Greenh. Cultiv. 2019, 1–14. [Google Scholar]
- Khoshnevisan, B.; Rafiee, S.; Omid, M.; Mousazadeh, H.; Clark, S. Environmental Impact Assessment of Tomato and Cucumber Cultivation in Greenhouses Using Life Cycle Assessment and Adaptive Neuro-Fuzzy Inference System. J. Clean. Prod. 2014, 73, 183–192. [Google Scholar] [CrossRef]
- Zhang, G.; Ding, X.; Li, T.; Pu, W.; Lou, W.; Hou, J. Dynamic Energy Balance Model of a Glass Greenhouse: An Experimental Validation and Solar Energy Analysis. Energy 2020, 198, 117281. [Google Scholar] [CrossRef]
- Stanghellini, C.; Oosfer, B.; Heuvelink, E. Greenhouse Horticulture: Technology for Optimal Crop Production; Wageningen Academic Publishers: Wageningen, The Netherland, 2019; ISBN 9086863299. [Google Scholar]
- Keating, B.A.; Thorburn, P.J. Modelling Crops and Cropping Systems—Evolving Purpose, Practice and Prospects. Eur. J. Agron. 2018, 100, 163–176. [Google Scholar] [CrossRef]
- Roy, J.C.; Boulard, T.; Kittas, C.; Wang, S. Convective and Ventilation Transfers in Greenhouses, Part 1: The Greenhouse Considered as a Perfectly Stirred Tank. Biosyst. Eng. 2002, 83, 1–20. [Google Scholar] [CrossRef]
- Golzar, F.; Heeren, N.; Hellweg, S.; Roshandel, R. A Novel Integrated Framework to Evaluate Greenhouse Energy Demand and Crop Yield Production. Renew. Sustain. Energy Rev. 2018, 96, 487–501. [Google Scholar] [CrossRef]
- Vanthoor, B.H.E.; van Henten, E.J.; Stanghellini, C.; de Visser, P.H.B. A Methodology for Model-Based Greenhouse Design: Part 3, Sensitivity Analysis of a Combined Greenhouse Climate-Crop Yield Model. Biosyst. Eng. 2011, 110, 396–412. [Google Scholar] [CrossRef]
- Van Beveren, P.J.M.; Bontsema, J.; Van Straten, G.; Van Henten, E.J. Minimal Heating and Cooling in a Modern Rose Greenhouse. Appl. Energy 2015, 137, 97–109. [Google Scholar] [CrossRef]
- Joudi, K.A.; Farhan, A.A. A Dynamic Model and an Experimental Study for the Internal Air and Soil Temperatures in an Innovative Greenhouse. Energy Convers. Manag. 2015, 91, 76–82. [Google Scholar] [CrossRef]
- Salazar-Moreno, R.; López-Cruz, I.L.; Sánchez Cruz, A.C. Dynamic Energy Balance Model in a Greenhouse with Tomato Cultivation: Simulation, Calibration and Evaluation. Rev. Chapingo Ser. Hortic. 2019, 25, 45–60. [Google Scholar] [CrossRef]
- Dimitropoulou, A.-M.N.; Maroulis, V.Z.; Giannini, E.N. A Simple and Effective Model for Predicting the Thermal Energy Requirements of Greenhouses in Europe. Energies 2023, 16, 6788. [Google Scholar] [CrossRef]
- Calise, F.; Cappiello, F.L.; Cimmino, L.; Vicidomini, M. Dynamic Modelling and Energy, Economic, and Environmental Analysis of a Greenhouse Supplied by Renewable Sources. Appl. Sci. 2023, 13, 6584. [Google Scholar] [CrossRef]
- Baeza, E.; Ignacio Montero, J.; Pérez-Parra, J.J.; Bailey, B.; Hernández, J.C.; Carlos Gázquez, J. Avances en el Estudio de la Ventilación Natural; Cajamar Caja Rural: Madrid, Spain, 2014. [Google Scholar]
- Van Ooteghem, R.J.C. Optimal Control Design for a Solar Greenhouse. IFAC Proc. Vol. 2010, 43, 304–309. [Google Scholar] [CrossRef]
- Speetjens, S.L.; Stigter, J.D.; Van Straten, G. Physics-Based Model for a Water-Saving Greenhouse. Biosyst. Eng. 2010, 105, 149–159. [Google Scholar] [CrossRef]
- Valera, D.L.; Molina, F.D.; Alvarez, A.J. Ahorro y Eficiencia Energética en Invernaderos; IDAE: Madrid, Spain, 2008; ISBN 8496680258. [Google Scholar]
- Ruiz-García, A.; López-Cruz, I.L.; Arteaga-Ramírez, R.; Ramírez-Arias, J.A. Tasas de Ventilación Natural de Un Invernadero Del Centro de México Estimadas Mediante Balance de Energía. Agrociencia 2015, 49, 87–100. [Google Scholar]
- Wang, L.; Wang, B. Construction of Greenhouse Environment Temperature Adaptive Model Based on Parameter Identification. Comput. Electron. Agric. 2020, 174, 105477. [Google Scholar] [CrossRef]
- Montaño-Rodríguez, S.; Villagrán-Munar, E.A.; Osorio-Fiaga, D.F.; Bojacá-Aldana, C.R.; Velásquez-Vargas, W.L. Simulación Numérica Del Comportamiento Térmico de Un Macro Túnel Utilizado Para La Producción de Hongos Comestibles Bajo Condiciones de Clima Tropical. Rev. Tecnol. Marcha 2019, 32, 78–85. [Google Scholar] [CrossRef]
- Awani, S.; Kooli, S.; Chargui, R.; Guizani, A. Numerical and Experimental Study of a Closed Loop for Ground Heat Exchanger Coupled with Heat Pump System and a Solar Collector for Heating a Glass Greenhouse in North of Tunisia. Int. J. Refrig. 2017, 76, 328–341. [Google Scholar] [CrossRef]
- Villagrán-Munar, E.A.; Jaramillo, J.E. Microclimatic Behavior of a Screen House Proposed for Horticultural Production in Low-Altitude Tropical Climate Conditions. Comun. Sci. 2020, 11, e3350. [Google Scholar] [CrossRef]
- Reyes-Rosas, A.; Rodríguez-García, R.; Zermeño-González, A.; Jasso-Cantú, D.; Cadena-Zapata, M.; Burgueño-Camacho, H. Evaluación de un Modelo para Estimar la Temperatura y Humedad Relativa en el Interior de Invernadero con Ventilación Natural. Rev. Chapingo Ser. Hortic. 2012, 18, 125–140. [Google Scholar]
- Villagrán-Munar, E.A. Implementation of Ventilation Towers in a Greenhouse Established in Low Altitude Tropical Climate Conditions: Numerical Approach to the Behavior of the Natural Ventilation. Rev. Ceres 2021, 68, 10–22. [Google Scholar] [CrossRef]
- Piscia, D.; Montero, J.I.; Melé, M.; Flores-Velázquez, J.; Pérez-Parra, J.; Baeza, E.J. A CFD Model to Study above Roof Shade and on Roof Shade of Greenhouses. Acta Hortic. 2012, 952, 133–140. [Google Scholar] [CrossRef]
- Villagrán-Munar, E.A. Determination of the Thermal Behavior of a Colombian Hanging Greenhouse Applying CFD Simulation. Rev. Cienc. Técnicas Agropecu. 2019, 28, 1–10. [Google Scholar]
- Faniyi, B.; Luo, Z. A Physics-Based Modelling and Control of Greenhouse System Air Temperature Aided by IoT Technology. Energies 2023, 16, 2708. [Google Scholar] [CrossRef]
- Ghosal, M.K.; Mishra, J.N. Formulation and Validation of a Mathematical Model for a Naturally Ventilated Greenhouse with Shading Nets in Warm and Humid Climate of India. Int. J. Ambient Energy 2014, 35, 94–107. [Google Scholar] [CrossRef]
- Baptista, F.J.; Bailey, B.J.; Meneses, J.F. Comparison of Humidity Conditions in Unheated Tomato Greenhouses with Different Natural Ventilation Management and Implications for Climate and Botrytis Cinerea Control. Acta Hortic. 2008, 801 Pt 2, 1013–1019. [Google Scholar]
- Villagran, E. Two-Dimensional Numerical Study of the Microclimate Generated in Three Screenhouses for the Climatic Conditions of the Colombian Caribbean. Int. J. Heat Technol. 2021, 39, 460–468. [Google Scholar] [CrossRef]
- Van Beveren, P.J.M.; Bontsema, J.; Van Straten, G.; Van Henten, E.J. Optimal Control of Greenhouse Climate Using Minimal Energy and Grower Defined Bounds. Appl. Energy 2015, 159, 509–519. [Google Scholar] [CrossRef]
- Evangelisti, L.; Guattari, C.; Asdrubali, F. On the Sky Temperature Models and Their Influence on Buildings Energy Performance: A Critical Review. Energy Build. 2019, 183, 607–625. [Google Scholar] [CrossRef]
- Bojacá, C.R.; Gil, R.; Gómez, S.; Cooman, A.; Schrevens, E. Analysis of Greenhouse Air Temperature Distribution Using Geostatistical Methods. Trans. ASABE 2009, 52, 957–968. [Google Scholar] [CrossRef]
- Villagrán, E.A.; Gil, R.; Acuña, J.F.; Bojacá, C.R. Optimization of Ventilation and Its Effect on the Microclimate of a Colombian Multispan Greenhouse. Agron. Colomb. 2012, 30, 282–288. [Google Scholar]
- Gil, R.; Bojacá-Aldana, C.R.; Casilimas, H.; Schrevens, E.; Suay, R. Assessment of Sidewall and Roof Vents Opening Configurations to Improve Airflow inside Greenhouses. Acta Hortic. 2012, 952, 141–146. [Google Scholar] [CrossRef]
- Reynafarje, X.; Villagrán, E.A.; Bojacá, C.R.; Gil, R.; Schrevens, E. Simulation and Validation of the Airflow inside a Naturally Ventilated Greenhouse Designed for Tropical Conditions. Acta Hortic. 2020, 1271, 55–62. [Google Scholar] [CrossRef]
- Villagrán, E.; Flores-Velazquez, J.; Bojacá, C.; Akrami, M. Evaluation of the Microclimate in a Traditional Colombian Greenhouse Used for Cut Flower Production. Agronomy 2021, 11, 1330. [Google Scholar] [CrossRef]
- Montero, J.I.; Muñoz, P.; Sánchez-Guerrero, M.C.; Medrano, E.; Piscia, D.; Lorenzo, P. Shading Screens for the Improvement of the Night-Time Climate of Unheated Greenhouses. Spanish J. Agric. Res. 2013, 11, 32–46. [Google Scholar] [CrossRef]
- Villagrán, M.E.A.; Bojacá, A.C.R. Numerical Evaluation of Passive Strategies for Nocturnal Climate Optimization in a Greenhouse Designed for Rose Production (Rosa spp.). Ornam. Hortic. 2019, 25, 351–364. [Google Scholar] [CrossRef]
- Villagrán-Munar, E.A.; Bojacá-Aldana, C.R. Study Using a CFD Approach of the Efficiency of a Roof Ventilation Closure System in a Multi-Tunnel Greenhouse for Nighttime Microclimate Optimization. Rev. Ceres 2020, 67, 345–356. [Google Scholar] [CrossRef]
- Passioura, J.B. Simulation Models: Science, Snake Oil, Education, or Engineering? Agron. J. 1996, 88, 690–694. [Google Scholar] [CrossRef]
Symbol | Description | Value | Units | Source |
---|---|---|---|---|
Greenhouse volume | 86 | m3 | Calculated | |
Area of soil covered by the greenhouse | 20 | m2 | Calculated | |
Roof and wall area | 97.76 | m2 | Calculated | |
Ventilation surface (side and roof) | 20.04 | m2 | Calculated | |
Radiation transmission of the roof | 85 | % | Technical data sheet of the plastic | |
Specific heat of air at constant pressure | 1.006 | J kg−1 °C−1 | Calculated | |
P | Atmospheric pressure | 742.6 | hPa | Calculated |
Air density | 1.1 | kgm−3 | Calculated | |
Heat transfer coefficient of the cover | 5 | W m−2°C−1 | [35] | |
Length of ventilation surface | 3.6 | m | Calculated | |
Ventilation surface width | 2 | m | Calculated | |
Discharge coefficient | 0.64 | dimensionless | Calculated | |
Infiltration coefficient | 0.008361 | m3 m−2 s−1 | [36] | |
Ventilation coefficient wind effect | 0.15 | dimensionless | [35] | |
Depth at which soil temperature is estimated | 0.10 | m | Experimental |
Variable | Technical Sensor Data |
---|---|
Wind speed. | Type: Thermal anemometer, measuring range: 0 to 40 ms−1, resolution: 0.1 ms−1, accuracy: 0.1 ms−1. |
Wind direction. | Type: Thermal anemometer, measuring range: 1 to 360°, resolution: 1°, accuracy: ±10°. |
Solar radiation. | Type: Silicium sensor, measuring range: 1 to 1300 Wm−2, resolution: 1 Wm−2, accuracy: ±10%. |
Temperature. | Type: PT1000, measuring range: -30 to +60 °C, resolution: 0.1 °C, accuracy: ±1 °C. |
Relative humidity. | Type: CMOS capacitive, measuring range: 0 to 100%, resolution: 0.1%, accuracy: ±10%. |
Variable | Technical Sensor Data |
---|---|
Data logging station. | Aranet PRO licence versions select, Aranet PRO 50. |
Air temperature. | Type: IP67 wireless and battery powered, Aranet IP 67, measuring range: −40 to +60 °C and 0 to 100%, resolution: 0.1 °C and 0.1%, accuracy: ± 0.3 °C and ±2%. |
Greenhouse cover temperature. | Type: IR temperature sensor, MLX90614ESF, measuring range: −40 to 125 °C, resolution: 0.02 °C, accuracy: ±0.5 °C. |
Soil temperature. | Type: K-type thermocouple MAX6675, measuring range: 0 to 800 °C, resolution: 0.25 °C, accuracy: ±1 °C. |
Measure of Adjustment | Before Calibration | After Calibration |
---|---|---|
MAE | 1.55 | 1.13 |
MSE | 3.05 | 1.83 |
MAPE | 17.2 | 8.1 |
EF | 0.79 | 0.92 |
F Test to Compare Two Variances | H0: σ(Dm)2 = σ(Ds)2 o H1: σ(Dm)2 ≠ σ(Ds)2 |
---|---|
Temperature | |
F | 0.961 |
p-value | 0.771 |
95% confidence interval | [0.692, 1.041] |
The null hypothesis (H0) is accepted. |
Date | Period | Simulated Temperature (°C) | ||
---|---|---|---|---|
Day/Month/Year | Hour | Tmean | Tmaximum | Tminimum |
27 March 2023 | From 00:00 to 06:00 | 12.9 ± 0.6 | 14.9 | 11.6 |
27 March 2023 | From 06:00 to 18:00 | 19.6 ± 2.6 | 25.9 | 12.4 |
27 March 2023 | From 18:00 to 06:00 | 13.7 ± 0.7 | 15.9 | 12.1 |
28 March 2023 | From 06:00 to 18:00 | 22.1 ± 4.1 | 32.2 | 13.9 |
28 March 2023 | From 18:00 to 06:00 | 13.9 ± 1.0 | 18.5 | 12.1 |
29 March 2023 | From 06:00 to 18:00 | 22.2 ± 4.2 | 32.4 | 13.9 |
29 March 2023 | From 18:00 to 06:00 | 14.3 ± 0.9 | 18.4 | 12.1 |
30 March 2023 | From 06:00 to 18:00 | 20.3 ± 3.1 | 27.1 | 13.8 |
30 March 2023 | From 18:00 to 06:00 | 13.6 ± 1.7 | 16.5 | 10.4 |
31 March 2023 | From 06:00 to 18:00 | 19.1 ± 3.5 | 27.6 | 11.1 |
31 March 2023 | From 18:00 to 06:00 | 13.9 ± 0.6 | 16.7 | 12.3 |
1 April 2023 | From 06:00 to 18:00 | 20.6 ± 3.1 | 26.2 | 14.0 |
1 April 2023 | From 18:00 to 00:00 | 13.3 ± 0.8 | 16.7 | 10.3 |
Measure of Adjustment | Implementation Phase |
---|---|
MAE | 1.39 |
MSE | 2.13 |
MAPE | 9.4 |
EF | 0.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortiz, G.A.; Chamorro, A.N.; Acuña-Caita, J.F.; López-Cruz, I.L.; Villagran, E. Calibration and Implementation of a Dynamic Energy Balance Model to Estimate the Temperature in a Plastic-Covered Colombian Greenhouse. AgriEngineering 2023, 5, 2284-2302. https://doi.org/10.3390/agriengineering5040140
Ortiz GA, Chamorro AN, Acuña-Caita JF, López-Cruz IL, Villagran E. Calibration and Implementation of a Dynamic Energy Balance Model to Estimate the Temperature in a Plastic-Covered Colombian Greenhouse. AgriEngineering. 2023; 5(4):2284-2302. https://doi.org/10.3390/agriengineering5040140
Chicago/Turabian StyleOrtiz, Gloria Alexandra, Adrian Nicolas Chamorro, John Fabio Acuña-Caita, Irineo L. López-Cruz, and Edwin Villagran. 2023. "Calibration and Implementation of a Dynamic Energy Balance Model to Estimate the Temperature in a Plastic-Covered Colombian Greenhouse" AgriEngineering 5, no. 4: 2284-2302. https://doi.org/10.3390/agriengineering5040140
APA StyleOrtiz, G. A., Chamorro, A. N., Acuña-Caita, J. F., López-Cruz, I. L., & Villagran, E. (2023). Calibration and Implementation of a Dynamic Energy Balance Model to Estimate the Temperature in a Plastic-Covered Colombian Greenhouse. AgriEngineering, 5(4), 2284-2302. https://doi.org/10.3390/agriengineering5040140