AI-Based Prediction of Carrot Yield and Quality on Tropical Agriculture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Areas
2.2. Root Sampling and Biometric Assessment
2.3. Qualitative Analysis of the Roots
2.4. The Acquisition and Processing of Satellite Imagery
2.5. Development of Predictive Models
3. Results and Discussion
3.1. Normality of the Dataset
3.2. Correlations between Variables
3.3. Assesement of Model Performance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Papoutsis, K.; Edelenbos, M. Postharvest environmentally and human-friendly pre-treatments to minimize carrot waste in the supply chain caused by physiological disorders and fungi. Trends Food Sci. Technol. 2021, 112, 88–98. [Google Scholar] [CrossRef]
- Kamel, D.G.; Hammam, A.R.A.; Nagm El-diin, M.A.H.; Awasti, N.; Abdel-Rahman, A.M. Nutritional. antioxidant. and antimicrobial assessment of carrot powder and its application as a functional ingredient in probiotic soft cheese. J. Dairy Sci. 2023, 106, 1672–1686. [Google Scholar] [CrossRef] [PubMed]
- Wszelaczyńska, E.; Szczepanek, M.; Pobereżny, J.; Kazula, M.J. Effect of biostimulant application and long-term storage on the nutritional value of carrot. Hortic. Bras. 2019, 37, 451–457. [Google Scholar] [CrossRef]
- Geofriau, E. Carrot root quality. In Carrots and Related Apiaceae Crop; Geoffriau, E., Simon., P.W., Eds.; CABI: Boston, MA, USA, 2020; pp. 171–184. [Google Scholar]
- Turner, S.; Ellison, S.; Senalik, D.A.; Simon, P.W.; Spalding, E.P.; Miller, N.D. An automated, high-throughput image analysis pipeline enables genetic studies of shoot and root morphology in carrot (Daucus carota L.). Front. Plant Sci. 2018, 9, 1703. [Google Scholar] [CrossRef] [PubMed]
- Mpemba, O.S.; Du Toit, A.; De Wit, M.; Venter, S.L.; Hugo, A. Edible characteristics of two nopalito cultivars compared to selected popular vegetables. Acta Hortic. 2022, 1343, 409–416. [Google Scholar] [CrossRef]
- Chevalier, W.; Moussa, S.A.; Ottoni, M.M.N.; Dubois-Laurent, C.; Huet, S.; Aubert, C.; Desnoues, E.; Navez, B.; Cottet, V.; Chalot, G.; et al. Evaluation of pedoclimatic factors and cultural practices effects on carotenoid and sugar content in carrot root. Eur. J. Agron. 2022, 140, 126577. [Google Scholar] [CrossRef]
- Baranski, R.; Maksylewicz-Kaul, A.; Nothnagel, T.; Cavagnaro, P.F.; Simon, P.W.; Grzebelus, D. Genetic diversity of carrot (Daucus carota L.) cultivars revealed by analysis of SSR loci. Genet. Resour. Crop Evol. 2012, 59, 163–170. [Google Scholar] [CrossRef]
- Simon, P.W.; Grzebelus, D. Carrot Genetics and Breeding. In Carrots and Related Apiaceae Crop; Geoffriau, E., Simon, P.W., Eds.; CABI: Boston, MA, USA, 2020; pp. 61–75. [Google Scholar]
- Buttery, R.G.; Seifert, R.M.; Guadagni, D.G.; Black, D.R.; Ling, L. Characterization of some volatile constituents of carrots. J. Agric. Food Chem. 1968, 16, 1009–1015. [Google Scholar] [CrossRef]
- Wei, M.C.F.; Maldaner, L.F.; Ottoni, P.M.N.; Molin, J.P. Carrot Yield Mapping: A Precision Agriculture Approach Based on Machine Learning. AI 2020, 1, 229–241. [Google Scholar] [CrossRef]
- Suarez, L.A.; Robson, A.; McPhee, J.; O’Halloran, J.; van Sprang, C. Accuracy of carrot yield forecasting using proximal hyperspectral and satellite multispectral data. Precis. Agric. 2020, 21, 1304–1326. [Google Scholar] [CrossRef]
- Suarez, L.; Robertson-Dean, M.; Brinkhoff, J.; Robson, A. Forecasting carrot yield with optimal timing of Sentinel 2 image acquisition. Precis. Agric. 2023. [Google Scholar] [CrossRef]
- Stamford, J.D.; Vialet-Chabrand, S.; Cameron, I.; Lawson, T. Development of an accurate and low-cost NDVI imaging system to assess plant health. Plant Methods 2023, 19, 9. [Google Scholar] [CrossRef] [PubMed]
- Hossain, D.; Imtiaz, M.H.; Sazonov, E. Comparison of wearable sensors for estimating chewing force. IEEE Sens. J. 2020, 20, 5379–5388. [Google Scholar] [CrossRef]
- Rasmussen, J.; Ntakos, G.; Nielsen, J.; Svensgaard, J.; Poulsen, R.N.; Christensen, S. Are vegetation indices derived from consumer-grade cameras mounted on UAVs sufficiently reliable for assessing experimental plots? Eur. J. Agron. 2016, 74, 75–92. [Google Scholar] [CrossRef]
- Mkhabela, M.S.; Bullock, P.; Raj, S.; Wang, S.; Yang, Y. Crop yield forecasting on the Canadian prairies using MODIS NDVI data. Agric. For. Meteorol. 2011, 151, 385–393. [Google Scholar] [CrossRef]
- Tedesco, D.; Almeida Moreira, B.R.d.; Barbosa Júnior, M.R.; Papa, J.P.; da Silva, R.P. Predicting on multi-target regression for the yield of sweet potato by the market class of its roots upon vegetation indices. Comput. Electron. Agric. 2021, 191, 106544. [Google Scholar] [CrossRef]
- Vaiphasa, C. Consideração de técnicas de suavização para sensoriamento remoto hiperespectral. J. ISPRS De Fotogram. E Sensoriamento Remoto 2006, 60, 91–99. [Google Scholar] [CrossRef]
- Lyon, R.G. Understanding Digital Signal Processing, 2nd ed.; Prentice Hall: Upper SaddleRiver, NJ, USA, 2004; pp. 556–561. [Google Scholar]
- Madugundu, R.; Al-Gaadi, K.A.; Tola, E.; Hassaballa, A.A.; Kayad, A.G. Utilization of Landsat-8 data for the estimation of carrot and maize crop water footprint under the arid climate of Saudi Arabia. PLoS ONE 2018, 13, 2. [Google Scholar] [CrossRef]
- Subeesh, A.; Mehta, C.R. Automation and digitization of agriculture using artificial intelligence and internet of things. Artif. Intell. Agric. 2021, 5, 278–291. [Google Scholar] [CrossRef]
- Tedesco, D.; Oliveira, M.F.; Santos, A.F.; Silva, E.H.C.; Rolim, G.S.; Silva, R.P. Use of remote sensing to characterize the phenological development and to predict sweet potato yield in two growing seasons. Eur. J. Agron. 2021, 129, 126337. [Google Scholar] [CrossRef]
- Adolf, L. Normas Analíticas do Instituto Adolfo Lutz. In Métodos Químicos e Físicos Para Análise De Alimentos, 3rd ed.; IMESP: São Paulo, Brazil, 1985; Volume 1, pp. 181–182. [Google Scholar]
- Adolfo, L. Métodos Físico-Químicos Para Análise De Alimentos: Normas Analíticas Do Instituto Adolfo Lutz, 4th ed.; ANVISA: Brasília, Brazil, 2005. [Google Scholar]
- Calbo, A.G.; Carmelo, L.G.P. Fisiologia pós-colheita—Métodos macroscópicos e instrumentos. In Instrumentação Pós-Colheita em Frutas e Hortaliças; Embrapa: Brasília, Brazil, 2017; p. 284. [Google Scholar]
- Planet Team. Planet Application Program Interface. In Space for Life on Earth; San Francisco, CA, USA. 2019. Available online: https://api.planet.com (accessed on 26 March 2023).
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. Third Earth Resour. Technol. Satell. (ERTS) 1974, 1, 48–62. [Google Scholar]
- Huete, A.R. A Soil Adjusted Vegetation Index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Huete, A.R.; Didan, K.; Miura, T.; Rodrigues, E.; Goa, X.; Ferreira, L. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Roujean, J.; Breon, F. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sens. Environ. 1995, 51, 375–384. [Google Scholar] [CrossRef]
- Myers, R.H. Classical and Modern Regression with Applications; Duxbury Press: Belmont, CA, USA, 1990; Volume 2. [Google Scholar]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef]
- Mas, J.; Flores, J. The application of artificial neural networks to the analysis of re-motely sensed data. Int. J. Remote Sens. 2008, 29, 617–663. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Aiken, L.S.; West, S.G.; Pitts, S.C. Multiple linear regression. In Handbook of Psychology; Weiner, I.B., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2003; Volume 4, pp. 481–507. [Google Scholar]
- Freund, R.J.; Wilson, W.J.; Sa, P. Regression Analysis Statistical Modeling of a Response Variable; Elsevier. Inc.: San Diego, CA, USA, 2006; p. 459. [Google Scholar]
- Montgomery, D.C.; Peck, E.A.; Vining, G.G. Introduction to Linear Regression Analysis; John Wiley and Sons Inc.: New York, NY, USA, 2006; p. 612. [Google Scholar]
- Reid, J.; Gillespie, R. Yield and quality responses of carrots (Daucus carota L.) to water deficits. N. Z. J. Crop Hortic. Sci. 2017, 45, 299–312. [Google Scholar] [CrossRef]
- Gocic, M.; Trajkovic, S. Spatiotemporal characteristics of drought in Serbia. J. Hydrol. 2014, 510, 110–123. [Google Scholar] [CrossRef]
- Jaywant, S.; Singh, H.; Arif, K. Sensors and instruments for brix measurement: A review. Sensors 2022, 22, 2290. [Google Scholar] [CrossRef] [PubMed]
- Pham, H.; Awange, J.; Kuhn, M.; Nguyen, B.; Bui, L. Enhancing Crop Yield Prediction Utilizing Machine Learning on Satellite-Based Vegetation Health Indices. Sensors 2022, 22, 719. [Google Scholar] [CrossRef]
- Zhu, J.; Pierskalla, W.P. Applying a weighted random forests method to extract karst sinkholes from LiDAR data. J. Hydrol. 2016, 533, 343–352. [Google Scholar] [CrossRef]
- Qaisrani, Z.N.; Nuthammachot, N.; Techato, K.; Asadullah Jatoi, G.H.; Mahmood, B.; Ahmed, R. Drought variability assessment using standardized precipitation index. re-connaissance drought index and precipitation deciles across Balochistan, Pakistan. Braz. J. Biol. 2024, 84. [Google Scholar] [CrossRef]
- Van Klompenburg, T.; Kassahun, A.; Catal, C. Crop yield prediction using machine learning: A systematic literature review. Comput. Electron. Agric. 2020, 177, 105709. [Google Scholar] [CrossRef]
- Thiagarajan, A.; Lada, R.R.; Muthuswamy, S.; Adams, A. Agroclimatology-Based Yield Model for Carrot Using Multiple Linear Regression and Artificial Neural Networks. Agron. J. 2013, 105, 863. [Google Scholar] [CrossRef]
- Metiva, M.; Bunting, E.; Steinke, K.; Hayden, Z. Topdress strategies and remote sensing for nitrogen management in processing carrots. Agron. J. 2023, 115, 408–425. [Google Scholar] [CrossRef]
- Abbas, F.; Afzaal, H.; Farooque, A.; Tang, S. Crop Yield Prediction through Proximal Sensing and Machine Learning Algorithms. Agronomy 2020, 10, 1046. [Google Scholar] [CrossRef]
- Brainard, S.; Ellison, S.; Simon, P.; Dawson, J.; Goldman, I. Genetic characterization of carrot root shape and size using genome-wide association analysis and genomic-estimated breeding values. Theor. Appl. Genet. 2022, 135, 605–622. [Google Scholar] [CrossRef] [PubMed]
- Ryan, M. The social and ethical impacts of artificial intelligence in agriculture: Mapping the agricultural AI literature. AI Soc. 2023, 38, 2473–2485. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements. opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas. methods. instructions or products referred to in the content. |
Minimum | Maximum | Mean | SD | CV (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Variables | Site 1 | Site 2 | Site 1 | Site 2 | Site 1 | Site 2 | Site 1 | Site 2 | Site 1 | Site 2 |
NDVI | 0.68 | 0.68 | 0.91 | 0.88 | 0.78 | 0.81 | 0.05 | 0.04 | 7 | 6 |
RDVI | 0.32 | 0.41 | 0.92 | 0.60 | 0.87 | 0.55 | 0.04 | 0.01 | 5 | 3 |
SAVI | 0.31 | 0.42 | 0.88 | 0.63 | 0.52 | 0.58 | 0.17 | 0.02 | 32 | 3 |
EVI | 0.60 | 0.44 | 0.93 | 0.72 | 0.76 | 0.63 | 0.10 | 0.03 | 13 | 5 |
Total mass (g) | 693 | 1400 | 6412 | 4466 | 3326 | 3003 | 734 | 525 | 22 | 17 |
Air part (g) | 281 | 434 | 3192 | 2436 | 1164 | 1224 | 393 | 334 | 34 | 27 |
Root mass (g) | 174 | 595 | 3357 | 3598 | 1234 | 1883 | 343 | 412 | 28 | 22 |
Root length (cm) | 14 | 16 | 24 | 22 | 18 | 1883 | 1 | 1 | 7 | 5 |
Root diameter (cm) | 19 | 25 | 31 | 43 | 25 | 32 | 1.53 | 3 | 6 | 10 |
°Brix | 7.65 | 6.50 | 7.87 | 9 | 7.76 | 7.88 | 0.03 | 0.41 | 0.35 | 5 |
Firmness (N) | 29.79 | 26.15 | 32.38 | 39.78 | 31 | 32.56 | 0.33 | 1.76 | 1 | 5 |
NDVI | RDVI | SAVI | EVI | |
---|---|---|---|---|
Total mass | 0.68 | 0.24 | 0.78 | 0.64 |
Aerial mass | 0.14 | 0.03 | 0.54 | 0.48 |
Root mass | 0.78 | −0.21 | 0.67 | 0.09 |
Root length | 0.25 | 0.03 | 0.26 | 0.12 |
Root diameter | 0.38 | −0.67 | 0.21 | −0.55 |
°Brix | 0.23 | −0.33 | 0.23 | −0.17 |
Firmness | 0.56 | −0.15 | 0.31 | −0.05 |
Model | R2 | MAE | RMSE |
---|---|---|---|
ANN | 0.68 | 566.64 | 23.80 |
RF | 0.67 | 572.47 | 23.93 |
MLR | 0.61 | 591.22 | 24.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Lima Silva, Y.K.; Furlani, C.E.A.; Canata, T.F. AI-Based Prediction of Carrot Yield and Quality on Tropical Agriculture. AgriEngineering 2024, 6, 361-374. https://doi.org/10.3390/agriengineering6010022
de Lima Silva YK, Furlani CEA, Canata TF. AI-Based Prediction of Carrot Yield and Quality on Tropical Agriculture. AgriEngineering. 2024; 6(1):361-374. https://doi.org/10.3390/agriengineering6010022
Chicago/Turabian Stylede Lima Silva, Yara Karine, Carlos Eduardo Angeli Furlani, and Tatiana Fernanda Canata. 2024. "AI-Based Prediction of Carrot Yield and Quality on Tropical Agriculture" AgriEngineering 6, no. 1: 361-374. https://doi.org/10.3390/agriengineering6010022
APA Stylede Lima Silva, Y. K., Furlani, C. E. A., & Canata, T. F. (2024). AI-Based Prediction of Carrot Yield and Quality on Tropical Agriculture. AgriEngineering, 6(1), 361-374. https://doi.org/10.3390/agriengineering6010022