Can Different Cultivars of Panicum maximum Be Identified Using a VIS/NIR Sensor and Machine Learning?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Hyperspectral Data
2.3. Machine Learning and Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Luković, M.; Aćić, S.; Šoštarić, I.; Pećinar, I.; Dajić Stevanović, Z. Management and Ecosystem Services of Halophytic Vegetation. In Handbook of Halophytes: From Molecules to Ecosystems towards Biosaline Agriculture; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–31. [Google Scholar]
- Jaškūnė, K.; Aleliūnas, A.; Statkevičiūtė, G.; Kemešytė, V.; Studer, B.; Yates, S. Genome-Wide Association Study to Identify Candidate Loci for Biomass Formation under Water Deficit in Perennial Ryegrass. Front. Plant Sci. 2020, 11, 570204. [Google Scholar] [CrossRef]
- Godwin, I.D.; Rutkoski, J.; Varshney, R.K.; Hickey, L.T. Technological Perspectives for Plant Breeding. Theor. Appl. Genet. 2019, 132, 555–557. [Google Scholar] [CrossRef]
- Aasen, H.; Kirchgessner, N.; Walter, A.; Liebisch, F. PhenoCams for Field Phenotyping: Using Very High Temporal Resolution Digital Repeated Photography to Investigate Interactions of Growth, Phenology, and Harvest Traits. Front. Plant Sci. 2020, 11, 512245. [Google Scholar] [CrossRef]
- Anderegg, J.; Yu, K.; Aasen, H.; Walter, A.; Liebisch, F.; Hund, A. Spectral Vegetation Indices to Track Senescence Dynamics in Diverse Wheat Germplasm. Front. Plant Sci. 2020, 10, 466315. [Google Scholar] [CrossRef]
- Bian, L.; Zhang, H.; Ge, Y.; Čepl, J.; Stejskal, J.; El-Kassaby, Y.A. Closing the Gap between Phenotyping and Genotyping: Review of Advanced, Image-Based Phenotyping Technologies in Forestry. Ann. For. Sci. 2022, 79, 22. [Google Scholar] [CrossRef]
- da Silva Junior, C.A.; Nanni, M.R.; Shakir, M.; Teodoro, P.E.; de Oliveira-Júnior, J.F.; Cezar, E.; de Gois, G.; Lima, M.; Wojciechowski, J.C.; Shiratsuchi, L.S. Soybean Varieties Discrimination Using Non-Imaging Hyperspectral Sensor. Infrared Phys. Technol. 2018, 89, 338–350. [Google Scholar] [CrossRef]
- Pereira Ribeiro Teodoro, L.; Estevão, R.; Santana, D.C.; de Oliveira, I.C.; Lopes, M.T.G.; de Azevedo, G.B.; Rojo Baio, F.H.; da Silva Junior, C.A.; Teodoro, P.E. Eucalyptus Species Discrimination Using Hyperspectral Sensor Data and Machine Learning. Forests 2023, 15, 39. [Google Scholar] [CrossRef]
- Santana, D.C.; de Oliveira, I.C.; de Oliveira, J.L.G.; Baio, F.H.R.; Teodoro, L.P.R.; da Silva Junior, C.A.; Seron, A.C.C.; Ítavo, L.C.V.; Coradi, P.C.; Teodoro, P.E. High-Throughput Phenotyping Using VIS/NIR Spectroscopy in the Classification of Soybean Genotypes for Grain Yield and Industrial Traits. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2024, 310, 123963. [Google Scholar] [CrossRef]
- Herzig, P.; Borrmann, P.; Knauer, U.; Klück, H.-C.; Kilias, D.; Seiffert, U.; Pillen, K.; Maurer, A. Evaluation of RGB and Multispectral Unmanned Aerial Vehicle (UAV) Imagery for High-Throughput Phenotyping and Yield Prediction in Barley Breeding. Remote Sens. 2021, 13, 2670. [Google Scholar] [CrossRef]
- Ekramirad, N.; Doyle, L.; Loeb, J.; Santra, D.; Adedeji, A.A. Hyperspectral Imaging and Machine Learning as a Nondestructive Method for Proso Millet Seed Detection and Classification. Foods 2024, 13, 1330. [Google Scholar] [CrossRef]
- Blackburn, G.A. Hyperspectral Remote Sensing of Plant Pigments. J. Exp. Bot. 2007, 58, 855–867. [Google Scholar] [CrossRef]
- Prananto, J.A.; Minasny, B.; Weaver, T. Near Infrared (NIR) Spectroscopy as a Rapid and Cost-Effective Method for Nutrient Analysis of Plant Leaf Tissues. Adv. Agron. 2020, 164, 1–49. [Google Scholar]
- Yendrek, C.R.; Tomaz, T.; Montes, C.M.; Cao, Y.; Morse, A.M.; Brown, P.J.; McIntyre, L.M.; Leakey, A.D.B.; Ainsworth, E.A. High-Throughput Phenotyping of Maize Leaf Physiological and Biochemical Traits Using Hyperspectral Reflectance. Plant Physiol. 2017, 173, 614–626. [Google Scholar] [CrossRef]
- Khairunniza-Bejo, S.; Shahibullah, M.S.; Azmi, A.N.N.; Jahari, M. Non-Destructive Detection of Asymptomatic Ganoderma Boninense Infection of Oil Palm Seedlings Using NIR-Hyperspectral Data and Support Vector Machine. Appl. Sci. 2021, 11, 10878. [Google Scholar] [CrossRef]
- Santana, D.C.; Theodoro, G.d.F.; Gava, R.; de Oliveira, J.L.G.; Teodoro, L.P.R.; de Oliveira, I.C.; Baio, F.H.R.; da Silva Junior, C.A.; de Oliveira, J.T.; Teodoro, P.E. A New Approach to Identifying Sorghum Hybrids Using UAV Imagery Using Multispectral Signature and Machine Learning. Algorithms 2024, 17, 23. [Google Scholar] [CrossRef]
- Danilevicz, M.F.; Gill, M.; Anderson, R.; Batley, J.; Bennamoun, M.; Bayer, P.E.; Edwards, D. Plant Genotype to Phenotype Prediction Using Machine Learning. Front. Genet. 2022, 13, 822173. [Google Scholar] [CrossRef]
- Chlingaryan, A.; Sukkarieh, S.; Whelan, B. Machine Learning Approaches for Crop Yield Prediction and Nitrogen Status Estimation in Precision Agriculture: A Review. Comput. Electron. Agric. 2018, 151, 61–69. [Google Scholar] [CrossRef]
- Wei, X.; Johnson, M.A.; Langston Jr, D.B.; Mehl, H.L.; Li, S. Identifying Optimal Wavelengths as Disease Signatures Using Hyperspectral Sensor and Machine Learning. Remote Sens. 2021, 13, 2833. [Google Scholar] [CrossRef]
- Kaur, S.; Kakani, V.G.; Carver, B.; Jarquin, D.; Singh, A. Hyperspectral Imaging Combined with Machine Learning for High-throughput Phenotyping in Winter Wheat. Plant Phenome J. 2024, 7, e20111. [Google Scholar] [CrossRef]
- Thornthwaite, C.W. An Approach toward a Rational Classification of Climate. Geogr. Rev. 1948, 38, 55–94. [Google Scholar] [CrossRef]
- Teixeira, P.C.; Donagemma, G.K.; Fontana, A.; Teixeira, W.G. Manual de Métodos de Análise de Solo; Embrapa Solos: Rio de Janeiro, Brazil, 2017. [Google Scholar]
- Santana, D.C.; Teodoro, L.P.R.; Baio, F.H.R.; dos Santos, R.G.; Coradi, P.C.; Biduski, B.; da Silva Junior, C.A.; Teodoro, P.E.; Shiratsuchi, L.S. Classification of Soybean Genotypes for Industrial Traits Using UAV Multispectral Imagery and Machine Learning. Remote Sens. Appl. 2023, 29, 100919. [Google Scholar] [CrossRef]
- Gregori, G.S.; de Souza Loureiro, E.; Amorim Pessoa, L.G.; Azevedo, G.B.; Azevedo, G.T.; Santana, D.C.; Oliveira, I.C.; Oliveira, J.L.; Teodoro, L.P.; Baio, F.H.; et al. Machine Learning in the Hyperspectral Classification of Glycaspis Brimblecombei (Hemiptera Psyllidae) Attack Severity in Eucalyptus. Remote Sens. 2023, 15, 5657. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- de Lima Veras, E.L.; Difante, G.D.; Chaves Gurgel, A.L.; Graciano da Costa, A.B.; Gomes Rodrigues, J.; Marques Costa, C.; Emerenciano Neto, J.V.; Gusmão Pereira, M.D.; Ramon Costa, P. Tillering and Structural Characteristics of Panicum Cultivars in the Brazilian Semiarid Region. Sustainability 2020, 12, 3849. [Google Scholar] [CrossRef]
- Liu, L.; Song, B.; Zhang, S.; Liu, X. A Novel Principal Component Analysis Method for the Reconstruction of Leaf Reflectance Spectra and Retrieval of Leaf Biochemical Contents. Remote Sens. 2017, 9, 1113. [Google Scholar] [CrossRef]
- Terashima, I.; Fujita, T.; Inoue, T.; Chow, W.S.; Oguchi, R. Green Light Drives Leaf Photosynthesis More Efficiently than Red Light in Strong White Light: Revisiting the Enigmatic Question of Why Leaves Are Green. Plant Cell Physiol. 2009, 50, 684–697. [Google Scholar] [CrossRef]
- Virtanen, O.; Constantinidou, E.; Tyystjärvi, E. Chlorophyll Does Not Reflect Green Light–How to Correct a Misconception. J. Biol. Educ. 2022, 56, 552–559. [Google Scholar] [CrossRef]
- Hershey, D.R. Photosynthesis Misconceptions. Am. Biol. Teach. 1995, 57, 198. [Google Scholar] [CrossRef]
- Souza, F.H.Q.; Martins, P.H.A.; Martins, T.H.D.; Teodoro, P.E.; Baio, F.H.R. The Use of Vegetation Index via Remote Sensing Allows Estimation of Soybean Application Rate. Remote Sens. Appl. 2020, 17, 100279. [Google Scholar] [CrossRef]
- Meireles, J.E.; Cavender-Bares, J.; Townsend, P.A.; Ustin, S.; Gamon, J.A.; Schweiger, A.K.; Schaepman, M.E.; Asner, G.P.; Martin, R.E.; Singh, A. Leaf Reflectance Spectra Capture the Evolutionary History of Seed Plants. New Phytol. 2020, 228, 485–493. [Google Scholar] [CrossRef]
- Zhang, F.; Zhou, G. Estimation of Vegetation Water Content Using Hyperspectral Vegetation Indices: A Comparison of Crop Water Indicators in Response to Water Stress Treatments for Summer Maize. BMC Ecol. 2019, 19, 18. [Google Scholar] [CrossRef]
- Kour, V.P.; Arora, S. Particle Swarm Optimization Based Support Vector Machine (P-SVM) for the Segmentation and Classification of Plants. IEEE Access 2019, 7, 29374–29385. [Google Scholar] [CrossRef]
- Nagasubramanian, K.; Jones, S.; Sarkar, S.; Singh, A.K.; Singh, A.; Ganapathysubramanian, B. Hyperspectral Band Selection Using Genetic Algorithm and Support Vector Machines for Early Identification of Charcoal Rot Disease in Soybean Stems. Plant Methods 2018, 14, 86. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Neumann, K.; Friedel, S.; Kilian, B.; Chen, M.; Altmann, T.; Klukas, C. Dissecting the Phenotypic Components of Crop Plant Growth and Drought Responses Based on High-Throughput Image Analysis. Plant Cell 2014, 26, 4636–4655. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhao, X.; Jia, X. Spectral–Spatial Classification of Hyperspectral Data Based on Deep Belief Network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2381–2392. [Google Scholar] [CrossRef]
- Thapa, R.; Zhang, K.; Snavely, N.; Belongie, S.; Khan, A. The Plant Pathology Challenge 2020 Data Set to Classify Foliar Disease of Apples. Appl. Plant Sci. 2020, 8, e11390. [Google Scholar] [CrossRef]
Profundity | pH | P mg dm−³ | MO g kg−1 | K | Ca | Mg | Al | H + Al | S | T |
---|---|---|---|---|---|---|---|---|---|---|
Cmol dm−³ | ||||||||||
0–10 | 6.2 | 12.28 | 32.2 | 0.28 | 6.26 | 3.78 | 0 | 5.02 | 10.32 | 15.34 |
10–20 | 6.2 | 6.9 | 30.52 | 0.21 | 6.04 | 3.32 | 0 | 5.14 | 9.57 | 14.71 |
20–40 | 5.86 | 2.2 | 22.32 | 0.08 | 5.36 | 1.24 | 0.14 | 5.9 | 6.64 | 12.54 |
40–60 | 5.5 | 0.9 | 14.44 | 0.04 | 2.9 | 0.78 | 1.08 | 6.84 | 3.75 | 10.59 |
60–80 | 5.5 | 0.7 | 10.02 | 0.03 | 2.76 | 0.48 | 1.26 | 6.86 | 3.29 | 10.15 |
80–100 | 5.58 | 0.9 | 8.28 | 0.04 | 3.3 | 0.52 | 1.26 | 6.82 | 3.83 | 10.65 |
Profundity | Sand (g kg−1) | Clay (g kg−1) | Silt (g kg−1) | |||||||
0–10 | 140 | 716.67 | 143.33 | |||||||
10–20 | 120 | 740 | 140 | |||||||
20–40 | 125 | 755 | 120 | |||||||
40–60 | 116 | 782 | 102 | |||||||
60–80 | 116 | 788 | 96 | |||||||
80–100 | 92.5 | 790 | 117.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Difante, G.d.S.; Monteiro, G.O.d.A.; Santana, J.C.S.; Frontado, N.E.V.; Rodrigues, J.G.; Chaves, A.R.D.; Santana, D.C.; Oliveira, I.C.d.; Ítavo, L.C.V.; Baio, F.H.R.; et al. Can Different Cultivars of Panicum maximum Be Identified Using a VIS/NIR Sensor and Machine Learning? AgriEngineering 2024, 6, 3739-3751. https://doi.org/10.3390/agriengineering6040213
Difante GdS, Monteiro GOdA, Santana JCS, Frontado NEV, Rodrigues JG, Chaves ARD, Santana DC, Oliveira ICd, Ítavo LCV, Baio FHR, et al. Can Different Cultivars of Panicum maximum Be Identified Using a VIS/NIR Sensor and Machine Learning? AgriEngineering. 2024; 6(4):3739-3751. https://doi.org/10.3390/agriengineering6040213
Chicago/Turabian StyleDifante, Gelson dos Santos, Gabriela Oliveira de Aquino Monteiro, Juliana Caroline Santos Santana, Néstor Eduardo Villamizar Frontado, Jéssica Gomes Rodrigues, Aryadne Rhoana Dias Chaves, Dthenifer Cordeiro Santana, Izabela Cristina de Oliveira, Luis Carlos Vinhas Ítavo, Fabio Henrique Rojo Baio, and et al. 2024. "Can Different Cultivars of Panicum maximum Be Identified Using a VIS/NIR Sensor and Machine Learning?" AgriEngineering 6, no. 4: 3739-3751. https://doi.org/10.3390/agriengineering6040213
APA StyleDifante, G. d. S., Monteiro, G. O. d. A., Santana, J. C. S., Frontado, N. E. V., Rodrigues, J. G., Chaves, A. R. D., Santana, D. C., Oliveira, I. C. d., Ítavo, L. C. V., Baio, F. H. R., Oliveira, G. S., Silva Junior, C. A. d., Longhini, V. Z., Dias, A. M., Teodoro, P. E., & Teodoro, L. P. R. (2024). Can Different Cultivars of Panicum maximum Be Identified Using a VIS/NIR Sensor and Machine Learning? AgriEngineering, 6(4), 3739-3751. https://doi.org/10.3390/agriengineering6040213