Cashew Clones Water Productivity and Production Responses to Different Biochar Levels
Abstract
:1. Introduction
2. Methodology
2.1. Irrigation and Water Productivity
2.2. Available Soil Moisture
2.3. Production Variables
2.4. Statistical Analysis
3. Results and Discussion
3.1. Cashew Nut and Apple Yield
3.2. Available Soil Moisture Content
3.3. Irrigation Water Productivity
3.4. Cashew Apple Post-Harvest Quality
3.4.1. Soluble Solids
3.4.2. Titratable Acidity (TA) (%)
3.4.3. Soluble Solids/Titratable Acidity Ratio
3.4.4. Firmness
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Oliveira, N.N.; Mothé, C.G.; Mothé, M.G. Sustainable uses of cashew tree rejects: Cashew apple bagasse and cashew gum. Biomass Conv. Bioref. 2022, 12, 2623–2630. [Google Scholar] [CrossRef]
- Filho, M.; Soto-Blanco, B. Poisoning by Cashew Apple (Anacardium occidentale L.) in Cattle. Acta Sci. Vet. 2012, 40, 1083. [Google Scholar]
- Carr, M.K.V. The water relations and irrigation requirements of cashew (Anacardium occidentale L.): A review. Exp. Agric. 2014, 50, 24–39. [Google Scholar] [CrossRef]
- Araújo, A.R.; Costa, J.B.; Rogério, M.C.P.; Carneiro, M.; Muniz, L.C.; Fontenele, R.M.; Silva, V.L. Dehydrated cashew apple in different grinding sizes to sheep. Acta Sci. Anim. Sci. 2022, 44, 54398. [Google Scholar] [CrossRef]
- Mbasa, V.W.; Kapinga, F.A.; Nene, W.A.; Kidunda, B.R.; Kabanza, A.K.; Ngiha, K.N.; Lilai, S.A. Influence of cashew apple utilization on soil nutrient replenishment and performance of cashew seedlings. J. Plant Nutr. 2024, 47, 595–614. [Google Scholar] [CrossRef]
- Dheeraj, S.; Mishra, A. Mitigation of cashew apple fruits astringency. Environ. Sustain. 2023, 6, 319–329. [Google Scholar] [CrossRef]
- Almeida, M.L.B.; Moura, C.F.H.; Innecco, R.; Silveira, M.R.S.; Brito, E.S.D. Could the production region influence the quality and antioxidant activity of cashew apple? Rev. Colomb. Cienc. Hortícolas 2022, 16, e15108. [Google Scholar] [CrossRef]
- Mangalassery, S.; Rejani, R.; Singh, V.; Adiga, J.D.; Kalaivanan, D.; Rupa, T.R.; Philip, P.S. Impact of different irrigation regimes under varied planting density on growth, yield and economic return of cashew (Anacardium occidentale L.). Irrig. Sci. 2019, 37, 483–494. [Google Scholar] [CrossRef]
- Liu, X.; Wei, Z.; Ma, Y.; Liu, J.; Liu, F. Effects of biochar amendment and reduced irrigation on growth, physiology, water-use efficiency and nutrients uptake of tobacco (Nicotiana tabacum L.) on two different soil types. Sci. Total Environ. 2021, 770, 144769. [Google Scholar] [CrossRef]
- Alfadil, A.A.; Shaghaleh, H.; Hamoud, Y.A.; Xia, J.; Wu, T.; Hamad, A.A.A.; Wang, Y.; Abdoulaye, A.O.; Sheteiwy, M.S. Straw biochar-induced modification of the soil physical properties enhances growth—Yield and water productivity of maize under deficit irrigation. Commun. Soil Sci. Plant Anal. 2021, 52, 1954–1970. [Google Scholar] [CrossRef]
- O’Keeffe, A.; Shrestha, D.; Dunkel, C.; Brooks, E.; Heinse, R. Modeling moisture redistribution from selective non-uniform application of biochar on Palouse hills. Agric. Water Manag. 2023, 277, 108026. [Google Scholar] [CrossRef]
- Liu, X.; Manevski, K.; Liu, F.; Andersen, M.N. Biomass accumulation and water use efficiency of faba bean-ryegrass intercropping system on sandy soil amended with biochar under reduced irrigation regimes. Agric. Water Manag. 2022, 273, 107905. [Google Scholar] [CrossRef]
- Joseph, S.; Cowie, A.L.; Van Zwieten, L.; Bolan, N.; Budai, A.; Buss, W.; Cayuela, M.L.; Graber, E.R.; Ippolito, J.A.; Kuzyakov, Y.; et al. How biochar works, and when it doesn’t: A review of mechanisms controlling soil and plant responses to biochar. GCB Bioenergy 2021, 13, 1731–1764. [Google Scholar] [CrossRef]
- Hilber, I.; Mayer, P.; Gouliarmou, V.; Hale, S.; Cornelissen, G.; Schmidt, H.; Bucheli, T. Bioavailability and bioaccessibility of polycyclic aromatic hydrocarbons from (post-pyrolytically treated) biochars. Chemosphere 2017, 174, 700–707. [Google Scholar] [CrossRef]
- Jensen, E.S.; Peoples, M.B.; Hauggaard-Nielsen, H. Faba bean in cropping systems. Field Crop. Res. 2010, 115, 203–216. [Google Scholar] [CrossRef]
- Smith, C.R.; Hatcher, P.G.; Kumar, S.; Lee, J.W. Investigation into the sources of biochar water-soluble organic compounds and their potential toxicity on aquatic microorganisms. ACS Sustain. Chem. Eng. 2016, 4, 2550–2558. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Y.; Herath, H.M.S.K. Polycyclic aromatic hydrocarbons (PAHs) in biochar-their formation, occurrence and analysis: A review. Org. Geochem. 2017, 114, 1–11. [Google Scholar] [CrossRef]
- Singh, M.; Deb, S.S.S.; Ritchie, G. Root distribution, soil water depletion, and water productivity of sweet corn under deficit irrigation and biochar application. Agric. Water Manag. 2023, 279, 108192. [Google Scholar] [CrossRef]
- Lima, A.A.C.; Oliveira, F.N.S.; Aquino, A.R.L. Classificação e Aptidão Agrícola dos Solos do Campo Experimental de Pacajus, Ceará, para Agricultura (Documento, n. 53); Embrapa Agroindústria Tropical: Fortaleza, Brazil, 2002; 20p. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Appendix 4: Method for Estimating the Change in Mineral Soil Organic Carbon Stocks from Biochar Amendments: Basis for Future Methodological Development. In Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Agriculture, Forestry and Other Land Use; IPCC: Geneva, Switzerland, 2019; Volume 4, Available online: https://www.ipcc-nggip.iges.or.jp/public/2019rf/pdf/4_Volume4/19R_V4_Ch02_Ap4_Biochar.pdf (accessed on 14 May 2024).
- Miyazawa, M.; Pavan, M.A.; Muraoka, T.; Carmo, C.A.F.S.; Carmo Melo, W.J. Análise Química de Tecido Vegetal. In Manual de Análises Químicas de Solos, Plantas e Fertilizantes; Silva, F.C., Ed.; Embrapa: Brasília, Brazil, 2009; pp. 191–234. [Google Scholar]
- Gondim, R.S.; Maia, A.; Taniguchi, C.; Muniz, C.; Araújo, T.A.; de Melo, A.T.; da Silva, J. Beneficial Effect of Biochar on Irrigated Dwarf-Green Coconut Tree. Atmosphere 2022, 13, 51. [Google Scholar] [CrossRef]
- Amonettte, J.E.; Joseph, S. Characteristics of Biochar: Microchemical Properties. In Biochar for Environmental Management; Lehmann, J., Joseph, S., Eds.; Routledge: Earthscan, UK, 2009; pp. 33–52. [Google Scholar]
- Chan, K.Y.; Xu, Z. Biochar: Nutrient Properties and Their Enhancement. In Biochar for Environmental Management; Lehmann, J., Joseph, S., Eds.; Routledge: Earthscan, UK, 2009; pp. 67–84. [Google Scholar]
- Joseph, S.; Willigen, P. Developing a Biochar Classification and Test Methods. In Biochar for Environmental Management; Lehmann, J., Joseph, S., Eds.; Routledge: Earthscan, UK, 2009; pp. 107–126. [Google Scholar]
- Schaper, H.; Chacko, E.K.; Blaikie, S.J. Effect of irrigation on leaf gas exchange and yield of cashew in northern Australia. Aust. J. Exp. Agric. 1996, 36, 861–868. [Google Scholar] [CrossRef]
- van Genuchten, M.T. Closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemistry—AOAC. Official methods of analysis of the Association of Official Analytical Chemistry, USA, 1992. Caracter. Propagação Melhor. Genético Pitaya Comer. Nativ. Cerrado 2013, 26, 62. [Google Scholar]
- Instituto Adolfo Lutz—IAL. Normas Analíticas, Métodos Químicos e Físicos para Análise de Alimentos; Instituto Adolfo Lutz—IAL: São Paulo, Brazil, 1985. [Google Scholar]
- R Core Team. The R Project for Statistical Computing, V.4.2.2; R Core Team: Vienna, Austria, 2022; Available online: https://www.r-project.org/ (accessed on 20 December 2022).
- Miranda, F.R.; Luz, H.I.H.; Rocha, A.B.; Guimarães, V.B. Produção de Clones de Cajueiro-Anão sob Diferentes Estratégias de Irrigação Deficitária, Brazil. 2021. Available online: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1137992/producao-de-clones-de-cajueiro-anao-sob-diferentes-estrategias-de-irrigacao-deficitaria. (accessed on 9 May 2024).
- Mesquita, R.C.M.; Parente, J.I.G.; Montenegro, A.A.T.; Costa, J.T.A.; Melo, F.I.O.; Pinho, J.L.N.; Júnior, A.T.C. Influência de regimes hídricos na fenologia do crescimento de clones e progênies de cajueiro precoce e comum nos primeiros vinte meses. Rev. Ciência Agronômica 2004, 35, 96–103. [Google Scholar] [CrossRef]
- Oliveira, V.H.; Miranda, F.R.; Lima, R.N.; Cavalcante, R.R.R. Effect of irrigation frequency on cashew nut yield in Northeast Brazil. Sci. Hortic. 2006, 108, 403–407. [Google Scholar] [CrossRef]
- Crisóstomo, L.; Roussetti, A.G.; Pimentel, C.; Barreto, P.; Lima, R. Produtividade, atributos industriais e avaliação econômica de castanha em cajueiro-anão precoce adubado com doses crescentes de nitrogênio e potássio, em cultivo sob sequeiro. Rev. Ciência Agronômica 2004, 35, 87–95. [Google Scholar]
- Iqbal, J.; Kiran, S.; Hussain, S.; Iqbal, R.K.; Ghafoor, U.; Younis, U.; Zarei, T.; Naz, M.; Germi, S.G.; Danish, S.; et al. Acidified Biochar Confers Improvement in Quality and Yield Attributes of Sufaid Chaunsa Mango in Saline Soil. Horticulturae 2021, 7, 418. [Google Scholar] [CrossRef]
- Li, W.; Gao, J.; Zhou, S.; Zhou, F. Effect of Biochar on Apple Yield and Quality in Aged Apple Orchards on the Loess Plateau (China). Agronomy 2024, 14, 1125. [Google Scholar] [CrossRef]
- Streubel, J.D.; Collins, H.P.; Garcez-Perez, M.; Tarara, J.; Granatstein, D.; Kruger, C.E. Influence of contrasting biochar types on five soils at increasing rates of application. Soil Sci. Soc. Am. J. 2011, 75, 1402–1413. [Google Scholar] [CrossRef]
- Novotny, E.H.; Maia, C.M.B.D.F.; Carvalho, M.T.D.M.; Madari, B.E. Biochar: Pyrogenic carbon for agricultural use—A critical review. Rev. Bras. Ciência Solo 2015, 39, 321–344. [Google Scholar] [CrossRef]
- Omondi, M.O.; Xia, X.; Nahay, O.A.; Liu, X.; Korai, P.K.; Pan, G. Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data. Geoderma 2016, 274, 28–34. [Google Scholar] [CrossRef]
- Gonçalves Oliveira, J.J.; Gondim, R.S.; Távora Costa, R.N.; da Silva, J.P. Effect of Biochar on Dwarf Green Coconut Orchard Yield and Irrigation Water Productivity. Commun. Soil Sci. Plant Anal. 2024, 55, 2355–2366. [Google Scholar] [CrossRef]
- Liu, Z.; Dugan, B.; Maisello, C.A.; Gonnermann, H.M. Biochar particle size, shape, and porosity act together to influence soil water properties. Public Libr. Sci. ONE 2017, 12, e0179079. [Google Scholar] [CrossRef]
- Edeh, I.G.; Masek, O. The role of biochar particle size and hydrophobicity in improving soil hydraulic properties. Eur. J. Soil Sci. 2021, 73, e13138. [Google Scholar] [CrossRef]
- Van Opstal, J.; Droogers, P.; Kaune, A.; Steduto, P.; Perry, C. Guidance on Realizing Real Water Savings with Crop Water Productivity Interventions; FAO and Future Water: Wageningen, The Netherlands, 2021. [Google Scholar] [CrossRef]
- Garruti, D.S.; Braga, D.C.; Barbosa, A.E.D.; Costa, F.N.F.; Silva, N.M.; Vidal Neto, F.C.; Barros, L.M.; Atributos da Qualidade de Pedúnculos de Cajueiro para Consumo in Natura. Boletim de Pesquisa e Desenvolvimento, Brazil, 2022, v. 234, p. 1. Available online: https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/1147108/1/BP-234.pdf (accessed on 6 September 2024).
- De Almeida Lopes, M.M.; de Moura, C.F.H.; de Aragão, F.A.S.; Cardoso, T.G.; Enéas Filho, J. Caracterização física de pedúnculos de clones de cajueiro anão precoce em diferentes estádios de maturação. Rev. Ciência Agronômica 2011, 42, 914–920. [Google Scholar] [CrossRef]
- Saleem, K.; Asghar, M.A.; Raza, A.; Javed, H.H.; Farooq, T.H.; Ahmad, M.A.; Rahman, A.; Ullah, A.; Song, B.; Du, J.; et al. Biochar-Mediated Control of Metabolites and Other Physiological Responses in Water-Stressed Leptocohloa fusca. Metabolites 2023, 13, 511. [Google Scholar] [CrossRef]
- Martins, R.M. Análise Metabolômica dos Clones de Cajueiro Anão (Anacardium occidentale L.): Aspectos Micromoleculares da Tolerância a Seca. Master’s Thesis, Universidade Federal do Ceará, Fortaleza, Brazil, 2021. Available online: http://www.repositorio.ufc.br/handle/riufc/63479 (accessed on 7 September 2024).
Depth | θfc | θpwp | θs | ds | Sand | Silt | Clay |
---|---|---|---|---|---|---|---|
(m) | (cm3 cm−3) | (cm3 cm−3) | (cm3 cm−3) | (cm3 cm−3) | (g kg−1) | (g kg−1) | (g kg−1) |
0–0.3 | 0.085 | 0.043 | 0.407 | 1.62 | 932 | 38 | 30 |
0.3–0.6 | 0.101 | 0.045 | 0.416 | 1.58 | 920 | 39 | 41 |
Depth (m) | P (mg dm−3) | OM g kg−1 | pH H2O | K+ | Ca2+ | Mg2+ | Na+ | H + Al | Al+3 | SB | CEC | BS | m |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
mmolc dm−3 | % | ||||||||||||
0–0.3 | 10.0 | 6.5 | 6.5 | 1.3 | 11 | 11 | 2 | 7 | 0 | 25 | 32 | 77 | 0 |
0.3–0.6 | 8.8 | 3.5 | 6.9 | 0.5 | 5 | 7 | 2 | 4 | 0 | 14 | 19 | 78 | 0 |
Depth (m) | Zn | Cu | Fe | Mn | B | ||||||||
mg dm−3 | |||||||||||||
0–0.3 | 3.5 | 0.2 | 1.6 | 5.7 | NA | ||||||||
0.3–0.6 | 1.8 | 0.3 | 6.5 | 1.0 | NA |
Macronutrients (g kg −1) | Micronutrients (mg kg−1) | (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
N | P | Mg | Ca | S | K | Cu | Fe | Zn | Mn | TC |
2.2 | 0.3 | 0.5 | 7.5 | ND ** | 3.4 | 2 | 419 | 33 | 54 | 35.6 |
‘BRS 226’ Clone | ||||
---|---|---|---|---|
Biochar (kg Plant−1) | Annual Hours of Irrigation | L Plant−1 Year−1 | ADS (mm) | |
0–0.3 | 0.3–0.6 | |||
0 | 198 | 14,098 | 3.5 | 2.5 |
1 | 168 | 11,962 | 3.7 | 2.4 |
2 | 186 | 13,243 | 3.6 | 2.6 |
4 | 239 | 17,017 | 3.6 | 2.5 |
‘CCP 76’ Clone | ||||
0 | 273 | 19,438 | 4.1 | 3.5 |
1 | 215 | 15,308 | 4.1 | 3.6 |
2 | 224 | 15,949 | 3.5 | 2.4 |
4 | 194 | 13,813 | 3.7 | 2.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gondim, R.S.; Taniguchi, C.A.K.; Serrano, L.A.L.; Moura, C.F.H. Cashew Clones Water Productivity and Production Responses to Different Biochar Levels. AgriEngineering 2024, 6, 3768-3784. https://doi.org/10.3390/agriengineering6040215
Gondim RS, Taniguchi CAK, Serrano LAL, Moura CFH. Cashew Clones Water Productivity and Production Responses to Different Biochar Levels. AgriEngineering. 2024; 6(4):3768-3784. https://doi.org/10.3390/agriengineering6040215
Chicago/Turabian StyleGondim, Rubens Sonsol, Carlos Alberto Kenji Taniguchi, Luiz Augusto Lopes Serrano, and Carlos Farley Herbster Moura. 2024. "Cashew Clones Water Productivity and Production Responses to Different Biochar Levels" AgriEngineering 6, no. 4: 3768-3784. https://doi.org/10.3390/agriengineering6040215
APA StyleGondim, R. S., Taniguchi, C. A. K., Serrano, L. A. L., & Moura, C. F. H. (2024). Cashew Clones Water Productivity and Production Responses to Different Biochar Levels. AgriEngineering, 6(4), 3768-3784. https://doi.org/10.3390/agriengineering6040215