CO2 Flux Emissions by Fixed and Mobile Soil Collars Under Different Pasture Management Practices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Management Characterization
2.3. Data Collection and Soil Sampling
2.4. Data Analysis
3. Results
3.1. CO2 Flux Emissions Between FC and MC
3.2. CO2 Flux Emissions During 6 Months of Evaluation
3.3. Soil Attributes and Relation with CO2 Flux Emissions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Han, G.; Xu, J.; Zhang, X.; Pan, X. Efficiency and Driving Factors of Agricultural Carbon Emissions: A Study in Chinese State Farms. Agriculture 2024, 14, 1454. [Google Scholar] [CrossRef]
- Kamyab, H.; SaberiKamarposhti, M.; Hashim, H.; Yusuf, M. Carbon dynamics in agricultural greenhouse gas emissions and removals: A comprehensive review. Carbon Lett. 2024, 34, 265–289. [Google Scholar] [CrossRef]
- Greenhouse Gas Emissions and Removals Estimation System—SEEG. 2023. Available online: https://plataforma.seeg.eco.br/?_gl=1*e87006*_ga*MTY0NzU5Mzc0Ni4xNzMwMTYwMzg1*_ga_XZWSWEJDWQ*MTczMDE2MDM4NC4xLjEuMTczMDE2MDUwMS4wLjAuMA (accessed on 28 October 2024).
- Stewart, K.; Balmford, A.; Scheelbeek, P.; Doherty, A.; Garnett, E.E. Changes in greenhouse gas emissions from food supply in the United Kingdom. J. Clean. Prod. 2023, 410, 137273. [Google Scholar] [CrossRef]
- Sun, C.; Xia, E.; Huang, J.; Tong, H. Coupling and coordination of food security and agricultural carbon emission efficiency: Changing trends, influencing factors, and different government priority scenarios. J. Environ. Manag. 2024, 370, 122533. [Google Scholar] [CrossRef] [PubMed]
- Lal, R. Digging deeper: A holistic perspective of factors affecting soil organic carbon sequestration in agroecosys-tems. Glob. Change Biol. 2018, 24, 3285–3301. [Google Scholar] [CrossRef]
- Santos, T.M.D.; Ozório, J.M.B.; Rosset, J.S.; Bispo, L.S.; Faria, E.; Castilho, S.C.P. Estoque de carbono e emissão de CO2 em áreas manejadas e nativa na Região Cone-Sul de Mato Grosso do Sul. Rev. Agro. Amb. 2021, 14, 339–354. [Google Scholar] [CrossRef]
- Segnini, A.; Xavier, A.A.P.; Otaviani-Junior, P.L.; Oliveira, P.P.A.; Pedroso, A.F.; Praes, M.F.F.M.; Rodrigues, P.H.M.; Milori, D.M.B.P. Soil carbon stock and humification in pastures under different levels of intensification in Brazil. Sci. Agric. 2019, 76, 33–40. [Google Scholar] [CrossRef]
- Oliveira, M.S.; Patrício, J.S.; Menezes, J.A.; Frozzi, J.C.; Gomes, J.M. Variabilidade Temporal do Efluxo de CO2 em Áreas de Floresta Secundária e Campo Natural na Região Sudoeste da Amazônia. Rev. Bras. Geogr. Fís. 2023, 16, 1466–1480. [Google Scholar] [CrossRef]
- Meurer, K.H.E.; Franko, U.; Stange, C.F.; Rosa, J.D.; Madari, B.E.; Jungkunst, H.F. Direct nitrous oxide (N2O) fluxes from soils under different land use in Brazil—A critical review. Environ. Res. Lett. 2016, 11, 023001. [Google Scholar] [CrossRef]
- Shakoor, A.; Shakoor, S.; Rehman, A.; Ashraf, F.; Abdullah, M.; Shahzad, S.M.; Faroog, T.H.; Ashraf, M. Effect of animal manure, crop type, climate zone, and soil attributes on greenhouse gas emissions from agricultural soils-A global meta-analysis. J. Clean. Prod. 2021, 278, 124019. [Google Scholar] [CrossRef]
- Ray, R.L.; Griffin, R.W.; Fares, A.; Elhassan, A.; Awal, R.; Woldesenbet, S.; Risch, E. Soil CO2 emission in response to organic amendments, temperature, and rainfall. Sci. Rep. 2020, 10, 5849. [Google Scholar] [CrossRef] [PubMed]
- Doyeni, M.O.; Suproniene, S.; Versuline, A.; Meskauskiene, L.; Kadziene, G. Influence of the Long-Term application of Management Practices (Tillage, Cover Crop and Glyphosate) on Greenhouse Gas Emissions and Soil Physical Properties. Sustainability 2024, 16, 2859. [Google Scholar] [CrossRef]
- Friedlingstein, P.; Jones, M.W.; O’Sullivan, M.; Andrew, R.M.; Hauck, J.; Peters, G.P.; Peters, W.; Pongratz, J.; Sitch, S.; Le Quéré, C.; et al. Global carbon budget 2019. ESSD 2019, 11, 1783–1838. [Google Scholar] [CrossRef]
- Murphy, R.M.; Richards, K.G.; Krol, D.J.; Gebremichael, A.W.; Lopez-Sangil, L.; Rambaud, J.; Cowan, N.; Lanigan, G.J.; Saunders, M. Assessing nitrous oxide emissions in time and space with minimal uncertainty using static chambers and eddy covariance from a temperate grassland. Agric. For. Meteorol. 2022, 313, 108743. [Google Scholar] [CrossRef]
- Frazão, L.A.; Piccolo, M.C.; Feigl, B.J.; Cerri, C.C.; Cerri, C.E.P. Inorganic nitrogen, microbial biomass and microbial activity of a sandy Brazilian Cerrado soil under different land uses. Agric. Ecosyst. Environ. 2010, 135, 161–167. [Google Scholar] [CrossRef]
- Chaplot, V.; Mchunu, C.N.; Manson, A.; Lorentz, S.; Jewitt, G. Water erosion-induced CO2 emissions from tilled and no-tilled soils and sediments. Agric. Ecosyst. Environ. 2012, 159, 62–69. [Google Scholar] [CrossRef]
- Thomazini, A.; Mendonça, E.S.; Souza, J.L.; Cardoso, I.M.; Garbin, M.L. Impact of organic no-till vegetables systems on soil organic matter in the Atlantic Forest biome. Sci. Hortic. 2015, 182, 145–155. [Google Scholar] [CrossRef]
- Pumpanen, J.; Kolari, P.; Ilvesniemi, H.; Minkkinen, K.; Vesala, T.; Niinistö, S.; Lohila, A.; Larmola, T.; Morero, M.; Pihlatie, M.; et al. Comparison of different chamber techniques for measuring soil CO2 efflux. Agric. For. Meteorol. 2004, 123, 159–176. [Google Scholar] [CrossRef]
- Li, J.J.; Liu, L.; Chen, D.M.; Xu, F.W.; Cheng, J.H.; Bai, Y.F. Effects of collar size and buried depth on the measurement of soil respiration in a typical steppe. Chin. J. Plant Ecol. 2019, 43, 152–164. [Google Scholar] [CrossRef]
- Heinemeyer, A.; Di Bene, C.; Lloyd, A.R.; Tortorella, D.; Baxter, R.; Huntley, B.; Gelsomiro, A.; Ineson, P. Soil respiration: Implications of the plant-soil continuum and respiration chamber collar-insertion depth on measurement and modelling of soil CO2 efflux rates in three ecosystems. Eur. J. Soil Sci. 2011, 62, 82–94. [Google Scholar] [CrossRef]
- Menyailo, O.V.; Matvienko, A.I.; Stepanov, A.L.; Makarov, M.I. Measuring soil CO2 efflux: Effect of collar depth. Russ. J. Ecol. 2015, 46, 152–156. [Google Scholar] [CrossRef]
- Jovani-Sancho, A.J.; Cummins, T.; Byrne, K.A. Collar insertion depth effects on soil respiration in afforested peatlands. Biol. Fertil. Soils 2017, 53, 677–689. [Google Scholar] [CrossRef]
- Silva, A.V.; Feliciano, M.; Patricio, M.S. Soil CO2 Fluxes in an Urban Green Space: A Case Study during the Northern Portuguese Spring Season. Rev. Ciências Agrárias 2023, 44, 208–214. [Google Scholar] [CrossRef]
- Luo, Y.; Zhou, X. Soil Respiration and the Environment; Academic Press: San Diego, CA, USA, 2010. [Google Scholar]
- Ma, X.; Jiang, S.; Zhang, Z.; Wang, H.; Song, C.; He, J. Long-term collar deployment leads to bias in soil respiration measurements. Methods Ecol. Evol. 2023, 14, 981–990. [Google Scholar] [CrossRef]
- USDA—Soil Survey Staff. Keys to Soil Taxonomy, 13th ed.; USDA Natural Resources Conservation Service: Washington, DC, USA, 2022. [Google Scholar]
- Teixeira, P.C.; Donagemma, G.K.; Fontana, A.; Teixeira, W.G. Manual de Métodos de Análise de Solos, 3rd ed.; EMBRAPA: Brasília, Brazil, 2017. [Google Scholar]
- Prezotti, L.C.; Gomes, J.A.; Dadalto, G.G.; Oliveira, J.A. Manual de Recomendação de Calagem e Adubação para Estado do Espírito Santo: 5ª Aproximação; CEDAGRO: Vitória, Brazil, 2007; 305p. [Google Scholar]
- Mendonça, E.D.S.; Matos, E.D.S. Matéria Orgânica do Solo: Métodos de Análises; UFV: Viçosa, Brazil, 2005. [Google Scholar]
- Islam, K.; Weil, R. Microwave irradiation of soil for routine measurement of microbial biomass carbon. Biol. Fertil. Soils 1998, 27, 408–416. [Google Scholar] [CrossRef]
- Ferreira, D.F. Sisvar: A computer statistical analysis system. Ciência Agrotecnologia 2011, 35, 1039–1042. [Google Scholar] [CrossRef]
- Barreto, R.C.; Madari, B.E.; Maddock, J.E.L.; Machado, P.L.O.A.; Torres, E.; Franchini, J.; Costa, A.R. The impact of soil management on aggregation, carbon stabilization and carbon loss as CO2 in the surface layer of a Rhodic Ferralsol in Southern Brazil. Agric. Ecosyst. Environ. 2009, 132, 243–251. [Google Scholar] [CrossRef]
- Ferdush, J.; Paul, V. A review on the possible factors influencing soil inorganic carbon under elevated CO2. Catena 2021, 24, 105434. [Google Scholar] [CrossRef]
- Stefan, S.; Faisal, H.; Talat, S.; Martin, M. Groundwater changes affect soil CO2 dynamics. In Proceedings of the EGU General Assembly 2024, Vienna, Austria, 14–19 April 2024. [Google Scholar] [CrossRef]
- Bastos, R.S.; Mendonça, E.S.; Alvarez, V.V.H.; Corrêa, M.M.; Costa, L.M. Formação e estabilização de agregados do solo influenciados por ciclos de umedecimento e secagem após adição de compostos orgânicos com diferentes características hidrofóbicas. Rev. Bras. Ciência Solo 2005, 29, 21–31. [Google Scholar] [CrossRef]
- Mao, N.; Wei, X.; Shao, M. Soil type-dependent effects of drying-wetting sequences on aggregates and their associated OC and N. Int. Soil Water Conserv. Res. 2022, 10, 649–661. [Google Scholar] [CrossRef]
- Healy, R.W.; Striegl, R.G.; Russell, T.F.; Hutchinson, G.L.; Livingston, G.P. Numerical evaluation of static-chamber measurements of soil-atmosphere gas exchange: Identification of physical processes. Soil Sci. Soc. Am. J. 1996, 60, 740–747. [Google Scholar] [CrossRef]
- Gholz, H.L.; Wedin, D.A.; Smitherman, S.M.; Harmon, M.E.; Parton, W.J. Long-term dynamics of pine and harwood litter in contrasting environments: Toward a global model of decomposition. Glob. Change Biol. 2000, 6, 751–765. [Google Scholar] [CrossRef]
- López-Santiago, J.G.; Villanueva-López, G.; Casanova-Lugo, F.; Aryal, D.R.; Pozo-Leyva, D. Livestock systems with scattered trees in paddocks reduce soil CO2 fluxes compared to grass monoculture in the humid tropics. Agrofor. Syst. 2023, 97, 209–221. [Google Scholar] [CrossRef]
- Lu, B.; Song, L.; Zang, S.; Wang, H. Warming promotes soil CO2 and CH4 emissions but decreasing moisture inhibits CH4 emissions in the permafrost peatland of the Great Xing’an Mountains. Sci. Total Environ. 2022, 829, 154725. [Google Scholar] [CrossRef]
- Röder, J.; Appelhans, T.; Peters, M.K.; Nauss, T.; Brandl, R. Disturbance can slow down litter decomposition, depending on severity of disturbance and season: An example from Mount Kilimanjaro. Web Ecol. 2024, 24, 11–33. [Google Scholar] [CrossRef]
Pasture Managements | Months of Evaluation | Σ | CV | ||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | ||||
Microbial biomass-C (µg g−1 de solo) | (%) | ||||||||
Control | 19.15 | 94.39 | 116.1 | 76.15 | 0.02 | 73.25 | 63.18 | 35.73 | 56.55 |
Chisel | 166.90 | 65.66 | 149.85 | 102.41 | 54.4 | 83.36 | 103.76 | 36.41 | 35.09 |
Fertilized | 138.17 | 91.66 | 260.55 | 139.18 | 56.29 | 146.51 | 138.73 | 43.35 | 31.25 |
Burned | 346.10 | 50.62 | 168.75 | 98.48 | 59.46 | 27.79 | 125.20 | 88.15 | 70.41 |
iCL | 47.88 | 15.05 | 70.20 | 94.54 | 21.51 | 59.36 | 51.42 | 23.28 | 45.26 |
PH | 82.08 | 47.88 | 147.15 | 110.29 | 86.02 | 93.46 | 94.48 | 22.83 | 24.16 |
Temperature (°C) | |||||||||
Control | 27.33 | 24.67 | 23.67 | 24.00 | 22.67 | 21.33 | 23.95 | 1.39 | 5.80 |
Chisel | 28.33 | 25.00 | 23.33 | 22.67 | 22.33 | 22.67 | 24.06 | 1.74 | 7.23 |
Fertilized | 29.00 | 26.00 | 23.67 | 22.33 | 23.00 | 24.33 | 24.72 | 1.85 | 7.49 |
Burned | 31.33 | 26.33 | 24.67 | 23.00 | 24.33 | 23.67 | 25.56 | 2.18 | 8.54 |
iCL | 30.00 | 26.33 | 23.67 | 23.33 | 24.33 | 26.33 | 25.67 | 1.89 | 7.36 |
PH | 31.00 | 27.00 | 23.33 | 22.33 | 23.33 | 23.67 | 25.11 | 2.59 | 10.33 |
Soil moisture (%) | |||||||||
Control | 7.42 | 20.05 | 12.77 | 11.55 | 5.90 | 5.31 | 10.50 | 4.29 | 40.86 |
Chisel | 12.47 | 24.8 | 13.86 | 12.25 | 5.53 | 9.07 | 13.00 | 4.22 | 32.49 |
Fertilized | 14.01 | 25.56 | 15.21 | 11.56 | 7.74 | 6.69 | 13.45 | 4.81 | 35.75 |
Burned | 10.31 | 23.05 | 10.20 | 9.22 | 7.64 | 6.37 | 11.13 | 3.97 | 35.69 |
iCL | 6.58 | 18.34 | 11.95 | 9.08 | 4.84 | 6.86 | 9.61 | 3.69 | 38.42 |
PH | 12.37 | 25.75 | 12.31 | 12.83 | 5.76 | 9.28 | 13.05 | 4.23 | 32.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Rocha Junior, P.R.; Andrade, F.V.; Donagemma, G.K.; Balieiro, F.d.C.; Mendonça, E.d.S.; Nascimento, A.L.; Pires, F.R.; Nardotto Júnior, A.O. CO2 Flux Emissions by Fixed and Mobile Soil Collars Under Different Pasture Management Practices. AgriEngineering 2024, 6, 4325-4336. https://doi.org/10.3390/agriengineering6040244
da Rocha Junior PR, Andrade FV, Donagemma GK, Balieiro FdC, Mendonça EdS, Nascimento AL, Pires FR, Nardotto Júnior AO. CO2 Flux Emissions by Fixed and Mobile Soil Collars Under Different Pasture Management Practices. AgriEngineering. 2024; 6(4):4325-4336. https://doi.org/10.3390/agriengineering6040244
Chicago/Turabian Styleda Rocha Junior, Paulo Roberto, Felipe Vaz Andrade, Guilherme Kangussú Donagemma, Fabiano de Carvalho Balieiro, Eduardo de Sá Mendonça, Adriel Lima Nascimento, Fábio Ribeiro Pires, and André Orlandi Nardotto Júnior. 2024. "CO2 Flux Emissions by Fixed and Mobile Soil Collars Under Different Pasture Management Practices" AgriEngineering 6, no. 4: 4325-4336. https://doi.org/10.3390/agriengineering6040244
APA Styleda Rocha Junior, P. R., Andrade, F. V., Donagemma, G. K., Balieiro, F. d. C., Mendonça, E. d. S., Nascimento, A. L., Pires, F. R., & Nardotto Júnior, A. O. (2024). CO2 Flux Emissions by Fixed and Mobile Soil Collars Under Different Pasture Management Practices. AgriEngineering, 6(4), 4325-4336. https://doi.org/10.3390/agriengineering6040244