Environmental Covariates for Sampling Optimization and Pest Prediction in Soybean Crops
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Area
2.2. Crop Management
2.3. Phase 1
2.3.1. Obtaining Environmental Covariates
- (a)
- Vegetation indices
- (b)
- Soil and Terrain topography
- (c)
- Riparian areas
2.3.2. Insect Pest Sampling
2.3.3. Data Analyses
2.4. Phase 2
2.4.1. Sampling Designs
2.4.2. Vegetation Index
2.4.3. Insect Pest Sampling
2.4.4. Data Analyses
3. Results
3.1. Phase 1
3.1.1. Correlation Between Insect Pests and Environmental Covariates
- (a)
- Phenological stages
- (b)
- Crop cycle
3.1.2. Selection of Environmental Covariates
3.2. Phase 2
3.2.1. Geostatistical Modeling
3.2.2. Random Forest Regression
3.2.3. Random Forest Classification
4. Discussion
4.1. Phase 1
Environmental Covariates and Insect Pest Infestations
4.2. Phase 2
4.2.1. Random Forest Regression
4.2.2. Random Forest Classifier
4.3. Environmental Covariates in Pest Sampling and Prediction
4.4. Integrated Pest Management and Site-Specific Management
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Angon, P.B.; Mondal, S.; Jahan, I.; Datto, M.; Antu, U.B.; Ayshi, F.J.; Islam, S. Integrated Pest Management (IPM) in Agriculture and Its Role in Maintaining Ecological Balance and Biodiversity. Adv. Agric. 2023, 2023, 1–19. [Google Scholar] [CrossRef]
- Batistela, M.J.; Bueno, A.d.F.; Nishikawa, M.A.N.; Bueno, R.C.O.d.F.; Hidalgo, G.; Silva, L.; Corbo, E.; Silva, R.B. Re-evaluation of leaf-lamina consumer thresholds for IPM decisions in short-season soybeans using artificial defoliation. Crop Prot. 2012, 32, 7–11. [Google Scholar] [CrossRef]
- Balafoutis, A.; Beck, B.; Fountas, S.; Vangeyte, J.; Van Der Wal, T.; Soto, I.; Gómez-Barbero, M.; Barnes, A.; Eory, V. Precision agriculture technologies positively contributing to ghg emissions mitigation, farm productivity and economics. Sustainability 2017, 9, 1339. [Google Scholar] [CrossRef]
- Brown, R.M.; Dillon, C.R.; Schieffer, J.; Shockley, J.M. The carbon footprint and economic impact of precision agriculture technology on a corn and soybean farm. J. Environ. Econ. Policy 2016, 5, 335–348. [Google Scholar] [CrossRef]
- Gebbers, R.; Adamchuk, V.I. Precision agriculture and food security. Science 2010, 327, 828–831. [Google Scholar] [CrossRef] [PubMed]
- Hengl, T.; Rossiter, D.G.; Stein, A. Soil sampling strategies for spatial prediction by correlation with auxiliary maps. Aust. J. Soil Res. 2003, 41, 1403–1422. [Google Scholar] [CrossRef]
- Szatmári, G.; László, P.; Takács, K.; Szabó, J.; Bakacsi, Z.; Koós, S.; Pásztor, L. Optimization of second-phase sampling for multivariate soil mapping purposes: Case study from a wine region, Hungary. Geoderma 2019, 352, 373–384. [Google Scholar] [CrossRef]
- Wadoux, A.M.-C.; Brus, D.J.; Heuvelink, G.B. Sampling design optimization for soil mapping with random forest. Geoderma 2019, 355, 113913. [Google Scholar] [CrossRef]
- Pinchao, E.C.; Muñoz, A.C. Mapping the Spatial Distribution of Conotrachelus psidii (Coleoptera: Curculionidae): Factors Associated with the Aggregation of Damage. Neotrop. Entomol. 2019, 48, 678–691. [Google Scholar] [CrossRef] [PubMed]
- Haavik, L.J.; Stephen, F.M. Insect Ecology. In Forest Entomology and Pathology; Allison, J.D., Paine, T.D., Slippers, B., Wingfield, M.J., Eds.; Springer: Cham, Switzerland, 2023; Volume 1, Chapter 4; pp. 91–114. Available online: https://link.springer.com/book/10.1007/978-3-031-11553-0 (accessed on 9 September 2024).
- Rebaudo, F.; Faye, E.; Dangles, O. Microclimate data improve predictions of insect abundance models based on calibrated spatiotemporal temperatures. Front. Physiol. 2016, 7, 139. [Google Scholar] [CrossRef]
- Colinet, H.; Sinclair, B.J.; Vernon, P.; Renault, D. Insects in fluctuating thermal environments. Annu. Rev. Èntomol. 2015, 60, 123–140. [Google Scholar] [CrossRef] [PubMed]
- Istifanus, A.P.; Abdelmutalab, A.G.A.; Pirk, C.W.W.; Yusuf, A.A. Predicting the Habitat Suitability and Distribution of Two Species of Mound-Building Termites in Nigeria Using Bioclimatic and Vegetation Variables. Diversity 2023, 15, 157. [Google Scholar] [CrossRef]
- Kamala, M.; Devanand, I. Impact of Climate Change on Insects and their Sustainable Management. In Sustainable Intensification for Agroecosystem Services and Management; Springer: Singapore, 2021; pp. 779–815. Available online: https://link.springer.com/chapter/10.1007/978-981-16-3207-5_21 (accessed on 9 September 2024).
- Fatnassi, H.; Pizzol, J.; Boulard, T.; Poncet, C.; Voisin, S.; Zigler, M. Dependence of thrips infestation on spatial climate distribution in a rose greenhouse crop. Acta Hortic. 2012, 927, 261–266. [Google Scholar] [CrossRef]
- Faye, E.; Rebaudo, F.; Carpio, C.; Herrera, M.; Dangles, O. Does heterogeneity in crop canopy microclimates matter for pests? Evidence from aerial high-resolution thermography. Agric. Ecosyst. Environ. 2017, 246, 124–133. [Google Scholar] [CrossRef]
- Potter, K.A.; Woods, H.A.; Pincebourde, S. Microclimatic challenges in global change biology. Glob. Change Biol. 2013, 19, 2932–2939. [Google Scholar] [CrossRef] [PubMed]
- Duffy, J.P.; Anderson, K.; Fawcett, D.; Curtis, R.J.; Maclean, I.M.D. Drones provide spatial and volumetric data to deliver new insights into microclimate modelling. Landsc. Ecol. 2021, 36, 685–702. [Google Scholar] [CrossRef]
- Suggitt, A.J.; Wilson, R.J.; Isaac, N.J.B.; Beale, C.M.; Auffret, A.G.; August, T.; Bennie, J.J.; Crick, H.Q.P.; Duffield, S.; Fox, R.; et al. Extinction risk from climate change is reduced by microclimatic buffering. Nat. Clim. Change 2018, 8, 713–717. [Google Scholar] [CrossRef]
- Abdullah, N.-A.; Radzi, S.N.F.; Asri, L.-N.; Idris, N.S.; Husin, S.; Sulaiman, A.; Khamis, S.; Sulaiman, N.; Hazmi, I.R. Insect community in riparian zones of Sungai Sepetang, Sungai Rembau and Sungai Chukai of Peninsular Malaysia. Biodivers. Data J. 2019, 7, e35679. [Google Scholar] [CrossRef] [PubMed]
- Brito, T.F.; Phifer, C.C.; Knowlton, J.L.; Fiser, C.M.; Becker, N.M.; Barros, F.C.; Contrera, F.A.L.; Maués, M.M.; Juen, L.; Montag, L.F.A.; et al. Forest reserves and riparian corridors help maintain orchid bee (Hymenoptera: Euglossini) communities in oil palm plantations in Brazil. Apidologie 2017, 48, 575–587. [Google Scholar] [CrossRef]
- Silva, G.S.; Jahnke, S.; Johnson, N. Riparian forest fragments in rice fields under different management: Differences on hymenopteran parasitoids diversity. Braz. J. Biol. 2020, 80, 122–132. [Google Scholar] [CrossRef] [PubMed]
- Pusch, M.; Samuel-Rosa, A.; Magalhães, P.S.G.; Amaral, L.R. Covariates in sample planning optimization for digital soil fertility mapping in agricultural areas. Geoderma 2023, 429, 116252. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Moraes, G.J.L.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef] [PubMed]
- Costes, E.; Lauri, P.E.; Simon, S.; Andrieu, B. Plant architecture, its diversity and manipulation in agronomic conditions, in relation with pest and pathogen attacks. Eur. J. Plant Pathol. 2013, 135, 455–470. [Google Scholar] [CrossRef]
- Huete, A.R.; Justice, C.; van Leeuwen, W. Modis Vegetation Index Algorithm Theoretical Basis. Environ. Sci. no. Mod 13. 1999. Available online: https://modis.gsfc.nasa.gov/data/atbd/atbd_mod13.pdf (accessed on 15 January 2025).
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS; Remote Sensing Center; NASA: Washington, DC, USA, 1973; pp. 309–317. Available online: https://ntrs.nasa.gov/api/citations/19740022614/downloads/19740022614.pdf (accessed on 15 January 2025).
- Gitelson, A.; Merzlyak, M.N. Quantitative estimation of chlorophyll-a using reflectance spectra: Experiments with autumn chestnut and maple leaves. J. Photochem. Photobiol. B 1994, 22, 247–252. [Google Scholar] [CrossRef]
- Baptista, G.M.M. Aplicação do Índice de Vegetação por Profundidade de Feição Espectral (SFDVI—Spectral Feature Depth Vegetation Index) em dados RapidEye. In Proceedings of the Anais XVII Simpósio Brasileiro de Sensoriamento Remoto—SBSR, João Pessoa, PB, Brazil, 25–29 April 2015; INPE: São Paulo, Brazil, 2015; pp. 2277–2284. Available online: http://www.dsr.inpe.br/sbsr2015/files/p0466.pdf (accessed on 15 January 2025).
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Murphy, P.N.C.; Ogilvie, J.; Arp, P. Topographic modelling of soil moisture conditions: A comparison and verification of two models. Eur. J. Soil Sci. 2009, 60, 94–109. [Google Scholar] [CrossRef]
- Santos, H.G. Sistema Brasileiro de Classificação de Solos; Embrapa: Brasília, Brazil, 2018. [Google Scholar]
- Pereira, G.W.; Valente, D.S.M.; de Queiroz, D.M.; de Freitas, A.L. SMART-MAP: Plugin QGIS para Interpolação Utilizando Krigagem Ordinária e Machine Learning. Viçosa—MG. 2023. Available online: https://plugins.qgis.org/plugins/Smart_Map (accessed on 15 January 2025).
- Brenning, A.; Bangs, D.; Becker, M.; Schratz, P.; Polakowski, F. Package ‘RSAGA’ Type Package Title SAGA Geoprocessing and Terrain Analysis. 2022. Available online: https://github.com/r-spatial/RSAGA (accessed on 16 January 2025).
- Briers, R.A.; Gee, J.H.R. Riparian forestry management and adult stream insects. Hydrol Earth Syst. Sci. 2004, 8, 545–549. [Google Scholar] [CrossRef]
- Ramey, T.L.; Richardson, J.S. Terrestrial Invertebrates in the Riparian Zone: Mechanisms Underlying Their Unique Diversity. Bioscience 2017, 67, 808–819. [Google Scholar] [CrossRef]
- Fehr, W.R.; Caviness, C.E. Stages of Soybean Development; Special Report 80; Iowa State University: Ames, IA, USA, 1977; pp. 1–12. Available online: https://dr.lib.iastate.edu/entities/publication/58c89bfe-844d-42b6-8b6c-2c6082595ba3 (accessed on 15 January 2025).
- Peterson, B.G.; Carl, P.; Boudt, K.; Bennett, R.; Ulrich, J.; Zivot, E.; Cornilly, D.; Hung, E.; Lestel, M.; Balkissoon, K.; et al. Package ‘PerformanceAnalytics’: Econometric Tools for Performance and Risk Analysis. 2020. Available online: https://rdrr.io/cran/PerformanceAnalytics/ (accessed on 7 August 2024).
- Chessel, D.; Dufour, A.B.; Thioulouse, J. The ade4 Package-I: One-Table Methods. 2004. Available online: https://pbil.univ-lyon1.fr/JTHome/ref/ade4-Rnews.pdf (accessed on 7 August 2024).
- Samuel-Rosa, A. Package ‘spsann’: Optimization of Sample Configurations Using Spatial Simulated Anneling. 2017. Available online: https://rdrr.io/github/samuel-rosa/spsann/ (accessed on 7 August 2024).
- Van Groenigen, J.W.; Siderius, W.; Stein, A. Constrained optimisation of soil sampling for minimisation of the kriging variance. Geoderma 1998, 87, 239–259. [Google Scholar] [CrossRef]
- Bischl, B.; Lang, M.; Kotthoff, L.; Schiffner, J.; Richter, J.; Studerus, E.; Casalicchio, G.; Jones, Z.M. Mlr: Machine learning in R. J. Mach. Learn. Res. 2016, 17, 1–5. Available online: https://www.jmlr.org/papers/volume17/15-066/15-066.pdf (accessed on 7 August 2024).
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-sampling Technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Specht, A.; Sosa-Gómez, D.R.; Roque-Specht, V.F.; Valduga, E.; Gonzatti, F.; Schuh, S.M.; Carneiro, E. Biotic Potential and Life Tables of Chrysodeixis includens (Lepidoptera: Noctuidae), Rachiplusia nu, and Trichoplusia ni on Soybean and Forage Turnip. J. Insect Sci. 2019, 19, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Bernardi, O.; Sorgatto, R.J.; Barbosa, A.D.; Domingues, F.A.; Dourado, P.M.; Carvalho, R.A.; Martinelli, S.; Head, G.P.; Omoto, C. Low susceptibility of Spodoptera cosmioides, Spodoptera eridania and Spodoptera frugiperda (Lepidoptera: Noctuidae) to genetically-modified soybean expressing Cry1Ac protein. Crop Prot. 2014, 58, 33–40. [Google Scholar] [CrossRef]
- Huang, F. Resistance of the fall armyworm, Spodoptera frugiperda, to transgenic Bacillus thuringiensis Cry1F corn in the Americas: Lessons and implications for Bt corn IRM in China. Insect Sci. 2021, 28, 574–589. [Google Scholar] [CrossRef] [PubMed]
- Hagstrum, D.W.; Subramanyam, B. Immature insects: Ecological roles of mobility. Am. Entomol. 2010, 56, 230–241. [Google Scholar] [CrossRef]
- Hoy, C.W.; McCulloch, C.E.; Shoemaker, C.A.; Shelton, A.M. Transition Probabilities for Trichoplusia ni (Lepidoptera: Noctuidae) Larvae on Cabbage as a Function of Microclimate. Environ. Entomol. 1989, 18, 187–194. [Google Scholar] [CrossRef]
- Cohen, M.P.; Alford, R.A. Factors affecting diurnal shelter use by the cane toad, Bufo marinus. Herpetologica 1996, 52, 172–181. Available online: https://www.researchgate.net/publication/222712043 (accessed on 7 August 2024).
- Ali, M.P.; Clemente-Orta, G.; Kabir, M.M.M.; Haque, S.S.; Biswas, M.; Landis, D.A. Landscape structure influences natural pest suppression in a rice agroecosystem. Sci. Rep. 2023, 13, 1–11. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, Y.; Pu, R.; Gonzalez-Moreno, P.; Yuan, L.; Wu, K.; Huang, W. Monitoring plant diseases and pests through remote sensing technology: A review. Comput. Electron. Agric. 2019, 165, 104943. [Google Scholar] [CrossRef]
- Barros, P.P.S.; Schutze, I.X.; Iost Filho, F.H.; Yamamoto, P.T.; Fiorio, P.R.; Demattê, J.A.M. Monitoring Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) Infestation in Soybean by Proximal Sensing. Insects 2021, 12, 47. [Google Scholar] [CrossRef] [PubMed]
- Iost Filho, F.H.; Pazini, J.B.; Medeiros, A.D.; Rosalen, D.L.; Yamamoto, P.T. Assessment of Injury by Four Major Pests in Soybean Plants Using Hyperspectral Proximal Imaging. Agronomy 2022, 12, 1516. [Google Scholar] [CrossRef]
- Maresma, Á.; Ariza, M.; Martínez, E.; Lloveras, J.; Martínez-Casasnovas, J.A. Analysis of vegetation indices to determine nitrogen application and yield prediction in maize (Zea mays L.) from a standard UAV service. Remote Sens. 2016, 8, 973. [Google Scholar] [CrossRef]
- Joiner, J.; Yoshida, Y.; Anderson, M.; Holmes, T.; Hain, C.; Reichle, R.; Koster, R.; Middleton, E.; Zeng, F.-W. Global relationships among traditional reflectance vegetation indices (NDVI and NDII), evapotranspiration (ET), and soil moisture variability on weekly timescales. Remote Sens. Environ. 2018, 219, 339–352. [Google Scholar] [CrossRef] [PubMed]
- Checa, M.F.; Rodriguez, J.; Willmott, K.R.; Liger, B. Microclimate variability significantly affects the composition, abundance and phenology of butterfly communities in a highly threatened neotropical dry forest. Fla. Entomol. 2014, 97, 1–13. [Google Scholar] [CrossRef]
- Vives-Ingla, M.; Sala-Garcia, J.; Stefanescu, C.; Casadó-Tortosa, A.; Garcia, M.; Peñuelas, J.; Carnicer, J. Interspecific differences in microhabitat use expose insects to contrasting thermal mortality. Ecol. Monogr. 2022, 93, e1561. [Google Scholar] [CrossRef]
- Chown, S.L.; Terblanche, J.S. Physiological Diversity in Insects: Ecological and Evolutionary Contexts. Adv. Insect Physiol. 2006, 33, 50–152. [Google Scholar] [CrossRef]
- Oliver, M.A.; Webster, R. Basic Steps in Geostatistics: The Variogram and Kriging; Springer: Cham, Switzerland, 2015; Available online: https://link.springer.com/book/10.1007/978-3-319-15865-5 (accessed on 22 November 2024).
- Martins, C.L.; Oliveira, A.L.G.; Cunha, I.A.; Oldoni, H.; Pereira, J.C.; Amaral, L.R. Classification of the Occurrence of Broadleaf Weeds in Narrow-Leaf Crops. Eng. Agrícola 2024, 44, e20230148. [Google Scholar] [CrossRef]
- Wendler, T.; Gröttrup, S. Data Mining with SPSS Modeler: Theory, Exercises and Solutions, 2nd ed.; Springer International Publishing: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Harrell, F.E. Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression, and Survival Analysis; Springer: New York, NY, USA, 2001. [Google Scholar] [CrossRef]
- Shrestha, N. Detecting Multicollinearity in Regression Analysis. Am. J. Appl. Math. Stat. 2020, 8, 39–42. [Google Scholar] [CrossRef]
- Bueno, A.F.; Batistela, M.J.; Bueno, R.C.O.F.; França-Neto, J.B.; Nishikawa, M.A.N.; Filho, A.L. Effects of integrated pest management, biological control and prophylactic use of insecticides on the management and sustainability of soybean. Crop Prot. 2011, 30, 937–945. [Google Scholar] [CrossRef]
Vegetation Index | Name | Formula | References |
---|---|---|---|
EVI | Enhanced vegetation index | [26] | |
NDVI | Normalized difference vegetation index | [27] | |
NDRE | Red-edge normalized difference vegetation index | [28] | |
SFDVI | Spectral feature depth vegetation index | [29] | |
DVI | Difference vegetation index | [30] |
R2–50 DAS | |||||||||
---|---|---|---|---|---|---|---|---|---|
EVI | NDVI | NDRE | SFDVI | DVI | Clay | Slope | River_dist | Forest_dist | |
Looper | 0.32 * | 0.33 * | 0.34 * | 0.29 * | 0.30 * | −0.24 | −0.09 | 0.41 * | 0.40 * |
Spodoptera | 0.22 | 0.23 | 0.22 | 0.2 | 0.20 | −0.17 | −0.23 | 0.22 | 0.19 |
Euschistus | −0.12 | −0.13 | −0.17 | −0.08 | −0.12 | 0.21 | 0.07 | 0.10 | −0.08 |
Dichelops | −0.05 | −0.08 | −0.05 | −0.03 | −0.06 | 0.09 | −0.03 | −0.25 * | −0.15 |
Chrysomelidae | −0.03 | −0.06 | −0.1 | 0.03 | 0 | 0.12 | 0.01 | −0.01 | −0.12 |
Lagria | 0.28 * | 0.22 | 0.21 | 0.31 * | 0.29 * | −0.27 * | −0.15 | −0.07 | −0.13 |
Aracanthus | −0.11 | −0.09 | −0.09 | −0.14 | −0.12 | −0.07 | −0.06 | −0.22 | −0.14 |
Total pests | 0.30 * | 0.26 * | 0.26 * | 0.32 * | 0.29 * | −0.25 * | −0.14 | 0 | −0.03 |
R3–57 DAS | |||||||||
Looper | 0.11 | 0.13 | 0.1 | 0.14 | 0.14 | −0.26 * | −0.20 | 0.47 * | 0.50 * |
Spodoptera | 0.34 * | 0.37 * | 0.34 * | 0.30 * | 0.34 * | −0.21 | 0.01 | 0.35 * | 0.35 * |
Nezara | 0.17 | 0.19 | 0.2 | 0.10 | 0.14 | −0.28 * | 0.07 | −0.01 | 0.02 |
Dichelops | −0.12 | −0.12 | −0.11 | −0.13 | −0.11 | 0.15 | −0.04 | −0.14 | −0.21 |
Chrysomelidae | −0.21 | −0.21 | −0.20 | −0.16 | −0.20 | 0.25 * | −0.047 | 0.05 | −0.08 |
Lagria | 0.00 | −0.02 | −0.02 | −0.04 | −0.02 | −0.02 | 0.07 | 0.06 | −0.01 |
Aracanthus | 0.04 | 0.045 | 0.08 | −0.06 | 0.01 | −0.20 | 0.01 | −0.32 * | −0.30 * |
Total pests | 0.17 | 0.15 | 0.14 | 0.12 | 0.16 | −0.23 | −0.07 | 0.35 * | 0.27 * |
R4–64 DAS | |||||||||
Looper | 0.16 | 0.16 | 0.13 | 0.23 | 0.2 | −0.21 | −0.063 | 0.26 * | 0.11 |
Spodoptera | 0.38 * | 0.35 * | 0.35 * | 0.40 * | 0.38 * | −0.12 | 0.1 | 0.43 * | 0.29 * |
Euschistus | 0.18 | 0.19 | 0.17 | 0.16 | 0.2 | −0.04 | −0.18 | 0.09 | 0.12 |
Nezara | 0.23 | 0.24 | 0.22 | 0.24 | 0.23 | −0.13 | 0.06 | 0.19 | 0.23 |
Dichelops | −0.14 | −0.13 | −0.13 | −0.22 | −0.16 | 0.18 | −0.06 | −0.12 | 0.06 |
Chrysomelidae | −0.23 | −0.22 | −0.23 | −0.23 | −0.21 | 0.22 | −0.21 | −0.05 | −0.01 |
Lagria | 0.06 | 0.08 | 0.06 | 0.07 | 0.07 | 0.14 | 0.014 | −0.016 | −0.07 |
Arvelius | 0.11 | 0.11 | 0.09 | 0.08 | 0.09 | −0.33 * | −0.17 | −0.34 * | −0.31 * |
Total pests | 0.19 | 0.2 | 0.17 | 0.22 | 0.22 | −0.07 | −0.04 | 0.17 | 0.09 |
R5–77 DAS | |||||||||
Looper | 0.22 | 0.11 | 0.22 | 0.22 | 0.22 | −0.12 | 0.11 | −0.06 | −0.05 |
Spodoptera | 0.18 | 0.16 | 0.17 | 0.2 | 0.2 | −0.02 | 0.13 | −0.02 | −0.12 |
Euschistus | 0.08 | 0.03 | 0.06 | 0.1 | 0.09 | 0.16 | 0.16 | −0.15 | −0.34 * |
Dichelops | −0.10 | −0.13 | −0.09 | −0.10 | −0.10 | 0.04 | 0.12 | 0.02 | 0.02 |
Chrysomelidae | −0.07 | −0.06 | −0.11 | −0.05 | −0.08 | −0.08 | −0.014 | 0.23 | 0.19 |
Lagria | −0.07 | −0.09 | −0.16 | −0.08 | −0.08 | 0.06 | −0.12 | 0.06 | 0.09 |
Blapstinus | 0.12 | 0.06 | 0.07 | 0.13 | 0.12 | −0.10 | −0.11 | −0.14 | −0.16 |
Total pests | 0.05 | −0.04 | −0.01 | 0.07 | 0.06 | −0.17 | −0.019 | −0.20 | −0.24 * |
R5–84 DAS | |||||||||
Looper | 0.08 | 0.13 | −0.04 | 0.12 | 0.09 | 0.13 | 0.31 * | 0.48 * | 0.37 * |
Spodoptera | −0.06 | −0.17 | −0.05 | 0 | −0.04 | 0 | −0.08 | 0.03 | −0.20 |
Euschistus | 0.04 | 0.04 | 0.05 | 0.03 | 0.06 | 0.08 | 0.03 | 0.07 | −0.08 |
Dichelops | −0.01 | −0.15 | 0 | 0.02 | 0.03 | −0.15 | 0.09 | −0.21 | −0.18 |
Chrysomelidae | 0.06 | 0.18 | 0.11 | 0.02 | 0.03 | 0.08 | −0.05 | −0.08 | −0.03 |
Lagria | −0.01 | −0.06 | −0.08 | −0.02 | 0.01 | 0.11 | 0.22 | −0.12 | −0.17 |
Blapstinus | 0.29 * | 0.2 | 0.25 * | 0.31 * | 0.30 * | −0.21 | −0.10 | 0.14 | 0.21 |
Total pests | 0.2 | 0.12 | 0.12 | 0.27 * | 0.24 * | −0.06 | 0.20 | 0.37 * | 0.18 |
R7–99 DAS | |||||||||
Looper | −0.09 | −0.04 | 0 | −0.09 | −0.06 | 0.23 | 0.20 | 0.04 | 0.02 |
Spodoptera | 0.16 | 0.19 | 0.22 | 0.10 | 0.15 | 0.06 | 0.11 | 0.15 | −0.07 |
Euschistus | 0.22 | 0.26 * | 0.31 * | 0.16 | 0.24 | −0.15 | −0.15 | 0.43 * | 0.44 * |
Nezara | 0.15 | 0.12 | 0.11 | 0.27 * | 0.17 | −0.23 | −0.40 * | 0.35 * | 0.31 * |
Dichelops | −0.14 | −0.12 | −0.13 | −0.15 | −0.14 | 0.13 | 0.01 | −0.03 | −0.14 |
Chrysomelidae | 0.16 | 0.15 | 0.18 | 0.09 | 0.15 | 0.05 | −0.01 | 0.13 | 0.25 |
Lagria | 0.15 | 0.15 | 0.10 | 0.18 | 0.17 | 0.01 | 0.09 | 0.08 | 0.15 |
Blapstinus | 0.03 | 0.02 | 0.05 | 0.11 | 0.05 | −0.38 * | 0.14 | −0.06 | 0.02 |
Total pests | 0.19 | 0.24 | 0.28 * | −0.03 | 0.19 | 0 | 0.14 | 0.22 | 0.04 |
EVI | NDVI | NDRE | SFDVI | DVI | Clay | Slope | River_dist | Forest_dist | |
---|---|---|---|---|---|---|---|---|---|
Looper | 0.27 | 0.28 * | 0.27 | 0.29 * | 0.28 * | −0.26 * | −0.11 | 0.50 * | 0.43 * |
Spodoptera | 0.26 | 0.22 | 0.21 | 0.27 | 0.26 | −0.05 | −0.02 | 0.17 | −0.00 |
Euschistus | −0.20 | −0.25 | −0.24 | −0.20 | −0.21 | 0.28 * | −0.06 | 0.01 | −0.08 |
Nezara | 0.22 | 0.23 | 0.23 | 0.22 | 0.23 | −0.13 | 0.25 * | 0.19 | 0.23 |
Aracanthus | −0.15 | −0.07 | −0.08 | −0.20 | −0.17 | −0.08 | −0.15 | −0.32 * | −0.24 |
Lagria | −0.04 | −0.05 | −0.04 | −0.04 | −0.03 | 0.14 | −0.05 | −0.12 | −0.13 |
Blapstinus | 0.23 | 0.17 | 0.20 | 0.22 | 0.24 | −0.22 | 0.11 | −0.22 | −0.12 |
Total pests | 0.32 * | 0.38 * | 0.35 * | 0.31 * | 0.32 * | −0.34 * | −0.07 | 0.34 * | 0.29 * |
Sampling Designs | MI | p | a | c0 | c1 | c0 + c1 | RMSE | R2 | Model | |
---|---|---|---|---|---|---|---|---|---|---|
Total pests | Regular | 0.61 | 0.07 | 181.52 | 7.35 | 5.89 | 13.24 | 3.25 | 0.14 | Gaussian |
CORR | 0.29 | 0.37 | 163.19 | 7.67 | 0.54 | 8.21 | 3.02 | 0.00 | Spherical | |
SPAN | 0.49 | 0.01 | 384.34 | 6.41 | 2.81 | 9.22 | 2.82 | 0.13 | Gaussian | |
Euschistus | Regular | 0.58 | 0.15 | 280.33 | 6.18 | 4.78 | 10.96 | 3.20 | 0.01 | Spherical |
CORR | 0.44 | 0.04 | 257.31 | 2.03 | 3.84 | 5.87 | 2.46 | 0.04 | Spherical | |
SPAN | 0.43 | 0.05 | 384.34 | 3.65 | 1.20 | 4.84 | 2.07 | 0.06 | Gaussian |
Regular | CORR | SPAN | |||||
---|---|---|---|---|---|---|---|
Predicted | |||||||
Absence (0) | Presence (1) | Absence (0) | Presence (1) | Absence (0) | Presence (1) | ||
Observed | Absence (0) | 5 (TN) | 4 (FP) | 4 (TN) | 4 (FP) | 7 (TN) | 2 (FP) |
Presence (1) | 4 (FN) | 8 (TP) | 2 (FN) | 7 (TP) | 1 (FN) | 11 (TP) | |
Errors % | 38.1 | 35.3 | 14.3 |
Accuracy | Precision | Specificity | Recall | F1 Score | |
---|---|---|---|---|---|
Regular | 0.62 | 0.56 | 0.67 | 0.56 | 0.56 |
CORR | 0.65 | 0.67 | 0.78 | 0.50 | 0.57 |
SPAN | 0.86 | 0.88 | 0.92 | 0.78 | 0.82 |
Regular | CORR | SPAN | |||||
---|---|---|---|---|---|---|---|
Predicted | |||||||
Absence (0) | Presence (1) | Absence (0) | Presence (1) | Absence (0) | Presence (1) | ||
Observed | Absence (0) | 5 (TN) | 2 (FP) | 1 (TN) | 6 (FP) | 6 (TN) | 1 (FP) |
Presence (1) | 6 (FN) | 7 (TP) | 4 (FN) | 9 (TP) | 9 (FN) | 4 (TP) | |
Errors % | 40 | 50 | 50 |
Accuracy | Precision | Specificity | Recall | F1 Score | |
---|---|---|---|---|---|
Regular | 0.60 | 0.45 | 0.54 | 0.71 | 0.55 |
CORR | 0.50 | 0.20 | 0.69 | 0.14 | 0.16 |
SPAN | 0.50 | 0.40 | 0.31 | 0.86 | 0.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martins, C.L.; Pusch, M.; Godoy, W.A.C.; Amaral, L.R.d. Environmental Covariates for Sampling Optimization and Pest Prediction in Soybean Crops. AgriEngineering 2025, 7, 21. https://doi.org/10.3390/agriengineering7010021
Martins CL, Pusch M, Godoy WAC, Amaral LRd. Environmental Covariates for Sampling Optimization and Pest Prediction in Soybean Crops. AgriEngineering. 2025; 7(1):21. https://doi.org/10.3390/agriengineering7010021
Chicago/Turabian StyleMartins, Cenneya Lopes, Maiara Pusch, Wesley Augusto Conde Godoy, and Lucas Rios do Amaral. 2025. "Environmental Covariates for Sampling Optimization and Pest Prediction in Soybean Crops" AgriEngineering 7, no. 1: 21. https://doi.org/10.3390/agriengineering7010021
APA StyleMartins, C. L., Pusch, M., Godoy, W. A. C., & Amaral, L. R. d. (2025). Environmental Covariates for Sampling Optimization and Pest Prediction in Soybean Crops. AgriEngineering, 7(1), 21. https://doi.org/10.3390/agriengineering7010021