The Application of Machine Learning to Model the Impacts of Extreme Climatic Events on the Productivity of Dwarf Green Coconut Trees in the Eastern Amazon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Productivity Data
2.3. Models Input Variables
2.4. Development and Validation of Predictive Models
2.5. Analysis of Models’ Performance
2.6. The Interpretation of the ML Model
3. Results and Discussion
3.1. Time Series of Extreme Climatic Events
3.2. Productivity of Dwarf Green Coconut
3.3. Impact of Extreme Climatic Events on Coconut Productivity
3.4. Correlation Between Coconut Productivity and Predictor Variables
3.5. Productivity Prediction Models for the Green Dwarf Coconut Palm
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leisner, C.P. Climate change impacts on food security-focus on perennial cropping systems and nutritional value. Plant Sci. 2020, 293, 110412. [Google Scholar] [CrossRef] [PubMed]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2022: Mitigation of Climate Change. Working Group III contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge UK; New York, NY, USA, 2022; Available online: https://www.ipcc.ch/report/ar6/wg3/ (accessed on 22 October 2024).
- Samarasinghe, C.R.K.; Meegahakumbura, M.K.; Dissanayaka, H.D.M.A.C.; Kumarathunge, D.; Perera, L. Variation in yield and yield components of different coconut cultivars in response to within-year rainfall and temperature variation. Sci. Hortic. 2018, 238, 51–57. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Cruse, R.M.; Tomer, M.D.; Iqbal, J.; Polley, H.W. Indicators of climate change in agricultural systems. Clim. Change 2020, 163, 1719–1732. [Google Scholar] [CrossRef]
- Gardner, A.S.; Maclean, I.M.D.; Gaston, K.J.; Bütikofer, L. Forecasting future crop suitability with microclimate data. Agric. Syst. 2021, 190, 103084. [Google Scholar] [CrossRef]
- Tigchelaar, M.; Battisti, D.S.; Naylor, R.L.; Ray, D.K. Future warming increases probability of globally synchronized maize production shocks. Proc. Natl. Acad. Sci. USA 2018, 115, 6644–6649. [Google Scholar] [CrossRef] [PubMed]
- Pathmeswaran, C.; Lokupitiya, E.; Waidyarathne, K.P.; Lokupitiya, R.S. Impact of extreme weather events on coconut productivity in three climatic zones of Sri Lanka. Eur. J. Agron. 2018, 96, 47–53. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). FAOSTAT: Production Data for Coconut; FAOSTAT: Rome, Italy, 2022; Available online: https://www.fao.org/faostat (accessed on 2 February 2024).
- de Lacerda, C.F.; Kong, E.Y.Y.; Ferreira-Neto, M.; Cave, R.; Bezerra, M.A.; Gheyi, H.R. Coconut Ecophysiology. In The Coconut: Botany, Production and Uses; CABI International: Wallingford, UK, 2024; pp. 14–30. [Google Scholar] [CrossRef]
- Ganeshkumar, B.; Gopala Krishna, G.V.T. Spatial assessment of climate variability effects on coconut crops in Tamil Nadu State—A case study. Theor. Appl. Climatol. 2022, 148, 121–129. [Google Scholar] [CrossRef]
- Fernandes, G.S.T.; Ribeiro, L.R.T.; Rua, M.L.; Vieira, W.G.M.; Pinto, J.V.N.; Souza, P.J.O.P. Meteorological conditions affect the seasonal development and yield of green dwarf coconut. Pesqui. Agropecu. Trop. 2024, 54, e77037. [Google Scholar] [CrossRef]
- Ranasinghe, C.S.; Silva, L.R.S.; Premasiri, R.D.N. Major determinants of fruit set and yield fluctuation in coconut (Cocos nucifera L.). J. Natl. Sci. Found. 2015, 43, 253–264. [Google Scholar] [CrossRef]
- Das, B.; Krishnakumar, K.N.; Nair, N.N.; Rajagopal, V.; Sreekumar, P. Comparative evaluation of linear and nonlinear weather-based models for coconut yield prediction in the west coast of India. Int. J. Biometeorol. 2020, 64, 1111–1123. [Google Scholar] [CrossRef] [PubMed]
- Kumari, M.; Chakraborty, A.; Chakravarathi, V.; Pandey, V.; Roy, P.S. Impact of climate and weather extremes on soybean and wheat yield using machine learning approach. Stoch. Environ. Res. Risk Assess. 2024, 38, 3461–3479. [Google Scholar] [CrossRef]
- Antony, B. Prediction of the production of crops with respect to rainfall. Environ. Res. 2021, 202, 111624. [Google Scholar] [CrossRef] [PubMed]
- Peiris, T.S.G.; Hansen, J.W.; Zubair, L. Use of seasonal climate information to predict coconut production in Sri Lanka. Int. J. Climatol. 2008, 28, 103–110. [Google Scholar] [CrossRef]
- Kayad, A.; Sozzi, M.; Gatto, S.; Marinello, F.; Pirotti, F. Monitoring within-field variability of corn yield using Sentinel-2 and machine learning techniques. Remote Sens. 2019, 11, 2873. [Google Scholar] [CrossRef]
- Folberth, C.; Baklanov, A.; Balkovič, J.; Skalský, R.; Khabarov, N.; Obersteiner, M. Spatio-temporal downscaling of gridded crop model yield estimates based on machine learning. Agric. For. Meteorol. 2019, 264, 1–15. [Google Scholar] [CrossRef]
- Torsoni, G.B.; de Oliveira Aparecido, L.E.; dos Santos, G.M.; Chiquitto, A.G.; da Silva Cabral Moraes, J.R.; de Souza Rolim, G. Soybean yield prediction by machine learning and climate. Theor. Appl. Climatol. 2023, 151, 1709–1725. [Google Scholar] [CrossRef]
- de Oliveira Aparecido, L.E.; de Souza Rolim, G.; Camargo Lamparelli, R.A.; de Souza, P.S.; dos Santos, E.R. Agrometeorological models for forecasting coffee yield. Agron. J. 2017, 109, 249–258. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; De Moraes Gonçalves, J.L.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef] [PubMed]
- Coelho, M.R.; Santos, H.G.; Silva, E.F.; Aglio, M.L.D. O Recurso Natural Solo. In Uso Agrícola dos Solos Brasileiros; Manzatto, C.V., Freitas Junior, E., Peres, J.R.R., Eds.; Embrapa Solos: Rio de Janeiro, Brazil, 2002; pp. 18–28. [Google Scholar]
- Beveridge, F.C.; Kalaipandian, S.; Yang, C.; Adkins, S.W. Fruit Biology of Coconut (Cocos nucifera L.). Plants 2022, 11, 3293. [Google Scholar] [CrossRef] [PubMed]
- Jayasuriya, V.D.S.; Perera, R.K.I.S. Growth, development and dry matter accumulation in the fruit of Cocos nucifera L. var. nana form pumila. In Cocos; Coconut Research Institute: Lunuwila, Sri Lanka, 2009; p. 3. [Google Scholar]
- Thornthwaite, C.W. The Water Balance. Climatology 1955, 8, 104. [Google Scholar]
- de Carvalho, E.O.T.; Fernandes, G.S.T.; Rua, M.L.; Monteiro, A.C.; Luz, D.B.D.; Lisboa, S.P.P.; Silva, J.V.F.; Pinto, J.V.N.; Miranda, F.R.; Lins, P.M.P.; et al. Net radiation partitioning, evapotranspiration, and crop coefficients of the green dwarf coconut in Santa Izabel do Pará, Brazilian Amazon. Bragantia 2024, 83, e20230160. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Jones, P.D.; Ambenje, P.; Bojariu, R.; Easterling, D.; Klein Tank, A.; Parker, D.; Rahimzadeh, F.; Renwick, J.A.; Rusticucci, M.; et al. Observations. Surface and Atmospheric Climate Change. Chapter 3. In IPCC Fourth Assessment Report: Climate Change 2007; IPCC: Geneva, Switzerland, 2007; Available online: http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-chapter3.pdf (accessed on 22 November 2024).
- Lundberg, S.M.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. arXiv 2017, arXiv:1705.07874. [Google Scholar]
- Gateau-Rey, L.; Tanner, E.V.J.; Rapidel, B.; Marelli, J.P.; Royaert, S. Climate change could threaten cocoa production: Effects of 2015–16 El Niño-related drought on cocoa agroforests in Bahia, Brazil. PLoS ONE 2018, 13, e0200454. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.N.; Aggarwal, P.K. Climate change and coconut plantations in India: Impacts and potential adaptation gains. Agric. Syst. 2013, 117, 45–54. [Google Scholar] [CrossRef]
- Bai, H.; Xiao, D.; Tang, J.; Liu, D.L. Evaluation of wheat yield in North China Plain under extreme climate by coupling crop model with machine learning. Comput. Electron. Agric. 2024, 217, 108651. [Google Scholar] [CrossRef]
- Carr, M.K.V.; Knox, J.W. The water relations and irrigation requirements of coconut (Cocos nucifera): A review. Exp. Agric. 2011, 47, 27–51. [Google Scholar] [CrossRef]
- Dhillon, R.; Takoo, G.; Sharma, V.; Nagle, M. Utilizing machine learning framework to evaluate the effect of climate change on maize and soybean yield. Comput. Electron. Agric. 2024, 221, 108982. [Google Scholar] [CrossRef]
- Iqbal, N.; Shahzad, M.U.; Sherif, E.-S.M.; Tariq, M.U.; Rashid, J.; Le, T.-V.; Ghani, A. Analysis of wheat-yield prediction using machine learning models under climate change scenarios. Sustainability 2024, 16, 6976. [Google Scholar] [CrossRef]
- De Oliveira Teixeira De Carvalho, E.; De Oliveira, P.T.; Lima, A.M.N.; Da Silva, F.P.; De Souza, J.T. Water productivity in irrigated coconut palms in humid tropical climate conditions in eastern Brazilian Amazon. Cienc. Rural 2024, 54, e20230416. [Google Scholar] [CrossRef]
- Jeong, J.H.; Resop, J.P.; Mueller, N.D.; Fleisher, D.H.; Yun, K.; Butler, E.E.; Timlin, D.J.; Shim, K.M.; Glotter, M.; Hyer, E.J.; et al. Random forests for global and regional crop yield predictions. PLoS ONE 2016, 11, e0156571. [Google Scholar] [CrossRef]
- Van Klompenburg, T.; Kassahun, A.; Catal, C. Crop yield prediction using machine learning: A systematic literature review. Comput. Electron. Agric. 2020, 177, 105709. [Google Scholar] [CrossRef]
- Xue, C.; Ghirardelli, A.; Chen, J.; Tarolli, P. Investigating agricultural drought in Northern Italy through explainable machine learning: Insights from the 2022 drought. Comput. Electron. Agric. 2024, 227, 109572. [Google Scholar] [CrossRef]
Variable | Unit | Description |
---|---|---|
Tmax | °C | Maximum temperature from month 1 (Tmax_1) to month 7 (Tmax_7) |
HT | High-temperature extreme event from month 1 to month 7 | |
HEP | Heavy precipitation extreme event from month 1 to month 7 | |
LP | Low-precipitation extreme event from month 1 to month 7 | |
HEP_sum | mm | Sum of heavy precipitation from month 1 to month 7 |
HD | High water deficit extreme event from month 1 to month 7 | |
HE | High water excess extreme event from month 1 to month 7 | |
p_t-1 | Fruits ha−1 | Productivity of the previous month |
Model | Parameters | Values Tested | Defined Values (PC) | Defined Values (PMC) |
---|---|---|---|---|
RF | n_stimators max_depth max_features | 50, 100, 150 5, 10, 15, 20 2 | 50 15 2 | 150 15 2 |
Variable | Coefficient | SE Coef | T-Value | p-Value | VIF |
---|---|---|---|---|---|
const | 1453.62 | 58.37 | 24.90 | <0.001 | 1.01 |
p_t-1 | 557.02 | 65.08 | 8.56 | <0.001 | 1.13 |
HEP_6 | 195.39 | 72.01 | 2.71 | 0.007 | 1.55 |
HE_7 | 227.39 | 67.60 | 3.36 | 0.001 | 1.40 |
Variable | Coefficient | SE Coef | T-Value | p-Value | VIF |
---|---|---|---|---|---|
const | 1458.43 | 61.39 | 23.75 | <0.001 | 1.01 |
p_t-1 | 633.33 | 65.11 | 9.73 | <0.001 | 1.02 |
LP_7 | −226.35 | 60.85 | −3.72 | 0.007 | 1.02 |
HD_4 | 121.26 | 55.02 | 2.20 | 0.029 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nery, M.K.M.; Fernandes, G.S.T.; Pinto, J.V.d.N.; Rua, M.L.; Santos, M.G.M.; Ribeiro, L.R.T.; Navarro, L.M.; de Souza, P.J.O.P.; Rolim, G.d.S. The Application of Machine Learning to Model the Impacts of Extreme Climatic Events on the Productivity of Dwarf Green Coconut Trees in the Eastern Amazon. AgriEngineering 2025, 7, 33. https://doi.org/10.3390/agriengineering7020033
Nery MKM, Fernandes GST, Pinto JVdN, Rua ML, Santos MGM, Ribeiro LRT, Navarro LM, de Souza PJOP, Rolim GdS. The Application of Machine Learning to Model the Impacts of Extreme Climatic Events on the Productivity of Dwarf Green Coconut Trees in the Eastern Amazon. AgriEngineering. 2025; 7(2):33. https://doi.org/10.3390/agriengineering7020033
Chicago/Turabian StyleNery, Maryelle Kleyce M., Gabriel S. T. Fernandes, João V. de N. Pinto, Matheus L. Rua, Miguel Gabriel M. Santos, Luis Roberto T. Ribeiro, Leandro M. Navarro, Paulo Jorge O. P. de Souza, and Glauco de S. Rolim. 2025. "The Application of Machine Learning to Model the Impacts of Extreme Climatic Events on the Productivity of Dwarf Green Coconut Trees in the Eastern Amazon" AgriEngineering 7, no. 2: 33. https://doi.org/10.3390/agriengineering7020033
APA StyleNery, M. K. M., Fernandes, G. S. T., Pinto, J. V. d. N., Rua, M. L., Santos, M. G. M., Ribeiro, L. R. T., Navarro, L. M., de Souza, P. J. O. P., & Rolim, G. d. S. (2025). The Application of Machine Learning to Model the Impacts of Extreme Climatic Events on the Productivity of Dwarf Green Coconut Trees in the Eastern Amazon. AgriEngineering, 7(2), 33. https://doi.org/10.3390/agriengineering7020033