Detection of Fusarium Head Blight in Wheat Using NDVI from Multispectral UAS Measurements and Its Correlation with DON Contamination
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Trial
2.2. Fungicide Application
2.3. Fusarium Inoculum and Inoculations
2.4. Unmanned Aerial Multispectral Measurement System
2.5. Deoxynivalenol Measurement
2.6. Statistical Analysis
3. Results
3.1. DON Concentration and NDVI Values in Different Treatments
3.2. Vegetative Indices in Different Treatments and Measurement Points
3.3. Relations Between Investigated Traits
4. Discussion
4.1. DON in Different Treatments
4.2. Relations of Investigated Traits
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Khan, M.K.; Pandey, A.; Athar, T.; Choudhary, S.; Deval, R.; Gezgin, S.; Hamurcu, M.; Topal, A.; Atmaca, E.; Santos, P.A.; et al. Fusarium head blight in wheat: Contemporary status and molecular approaches. 3 Biotech. 2020, 10, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Spanic, V.; Zdunic, Z.; Drezner, G.; Sarkanj, B. The Pressure of Fusarium Disease and Its Relation with Mycotoxins in the Wheat Grain and Malt. Toxins 2019, 11, 198. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Pedroso, I.R. Mycotoxins in Cereal-Based Products and Their Impacts on the Health of Humans, Livestock Animals and Pets. Toxins 2023, 15, 480. [Google Scholar] [CrossRef] [PubMed]
- Scudamore, K.; Patel, S. The Fate of Deoxynivalenol and Fumonisins in Wheat and Maize during Commercial Breakfast Cereal Production. World Mycotoxin J. 2008, 1, 437–448. [Google Scholar] [CrossRef]
- Bottalico, A.; Perrone, G. Toxigenic Fusarium Species and Mycotoxins Associated with Head Blight in Small-Grain Cereals in Europe. Eur. J. Plant Pathol. 2002, 108, 611–624. [Google Scholar] [CrossRef]
- Maresca, M. From the Gut to the Brain: Journey and Pathophysiological Effects of the Food-Associated Trichothecene Mycotoxin Deoxynivalenol. Toxins 2013, 5, 784–820. [Google Scholar] [CrossRef] [PubMed]
- European Commission Commission Regulation (EC) No 1881/2006 of 19 December 2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs. Off. J. Eur. Union 2006, 364, 5–24.
- European Commission Commission Recommendation of 17 August 2006 on the Presence of Deoxynivalenol, Zearalenone, Ochratoxin A, T-2 and HT-2 and Fumonisins in Products Intended for Animal Feeding. Off. J. Eur. Union 2006, 229, 7–9.
- European Commission Commission Recommendation of 27 March 2013 on the Presence of T-2 and HT-2 Toxin in Cereals and Cereal Products. Off. J. Eur. Union 2013, 91, 12–15.
- Shude, S.P.; Yobo, K.S.; Mbili, N.C. Progress in the management of Fusarium head blight of wheat: An overview. S. Afr. J. Sci. 2020, 116, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Bushnell, W.R.; Hazen, B.E.; Pritsch, C. Histology and Physiology of Fusarium Head Blight. In Fusarium Head Blight of Wheat and Barley; The American Phytopathological Society: St. Paul, MN, USA, 2003; pp. 44–83. [Google Scholar]
- Moretti, A.; Pascale, M.; Logrieco, A.F. Mycotoxin Risks under a Climate Change Scenario in Europe. Trends Food Sci. Technol. 2019, 84, 38–40. [Google Scholar] [CrossRef]
- Somers, D.J.; Fedak, G.; Savard, M. Molecular Mapping of Novel Genes Controlling Fusarium Head Blight Resistance and Deoxynivalenol Accumulation in Spring Wheat. Genome 2003, 46, 555–564. [Google Scholar] [CrossRef] [PubMed]
- Spanic, V.; Maricevic, M.; Ikic, I.; Sulyok, M.; Sarcevic, H. Three-Year Survey of Fusarium Multi-Metabolites/Mycotoxins Contamination in Wheat Samples in Potentially Epidemic FHB Conditions. Agronomy 2023, 13, 805. [Google Scholar] [CrossRef]
- McMullen, M.; Bergstrom, G.; De Wolf, E.; Dill-Macky, R.; Hershman, D.; Shaner, G.; Van Sanford, D. A Unified Effort to Fight an Enemy of Wheat and Barley: Fusarium Head Blight. Plant Dis. 2012, 96, 1712–1728. [Google Scholar] [CrossRef] [PubMed]
- Freije, A.N.; Wise, K.A. Impact of Fusarium Graminearum Inoculum Availability and Fungicide Application Timing on Fusarium Head Blight in Wheat. Crop Prot. 2015, 77, 137–147. [Google Scholar] [CrossRef]
- Bolanos-Carriel, C.; Wegulo, S.N.; Baenziger, P.S.; Funnell-Harris, D.; Hallen-Adams, H.E.; Eskridge, K.M. Effects of Fungicide Chemical Class, Fungicide Application Timing, and Environment on Fusarium Head Blight in Winter Wheat. Eur. J. Plant Pathol. 2020, 158, 667–679. [Google Scholar] [CrossRef]
- Inoue, Y. Satellite- and Drone-Based Remote Sensing of Crops and Soils for Smart Farming–a Review. Soil. Sci. Plant Nutr. 2020, 66, 798–810. [Google Scholar] [CrossRef]
- Liu, J.; Xiang, J.; Jin, Y.; Liu, R.; Yan, J.; Wang, L. Boost Precision Agriculture with Unmanned Aerial Vehicle Remote Sensing and Edge Intelligence: A Survey. Remote Sens. 2021, 13, 4387. [Google Scholar] [CrossRef]
- Dong, P.; Wang, M.; Li, K.; Qiao, H.; Zhao, Y.; Bacao, F.; Shi, L.; Guo, W.; Si, H. Research on the Identification of Wheat Fusarium Head Blight Based on Multispectral Remote Sensing from UAVs. Drones 2024, 8, 445. [Google Scholar] [CrossRef]
- Mustafa, G.; Zheng, H.; Khan, I.H.; Zhu, J.; Yang, T.; Wang, A.; Xue, B.; He, C.; Jia, H.; Li, G.; et al. Enhancing Fusarium Head Blight Detection in Wheat Crops Using Hyperspectral Indices and Machine Learning Classifiers. Comput. Electron. Agric. 2024, 218, 108663. [Google Scholar] [CrossRef]
- Xiao, Y.; Dong, Y.; Huang, W.; Liu, L.; Ma, H.; Ye, H.; Wang, K. Dynamic Remote Sensing Prediction for Wheat Fusarium Head Blight by Combining Host and Habitat Conditions. Remote Sens. 2020, 12, 3046. [Google Scholar] [CrossRef]
- McConachie, R.; Belot, C.; Serajazari, M.; Booker, H.; Sulik, J. Estimating Fusarium Head Blight Severity in Winter Wheat Using Deep Learning and a Spectral Index. Plant Phenome J. 2024, 7, e20103. [Google Scholar] [CrossRef]
- West, J.S.; Canning, G.G.M.; Perryman, S.A.; King, K. Novel Technologies for the Detection of Fusarium Head Blight Disease and Airborne Inoculum. Trop. Plant Pathol. 2017, 42, 203–209. [Google Scholar] [CrossRef]
- Feng, G.; Gu, Y.; Wang, C.; Zhou, Y.; Huang, S.; Luo, B. Wheat Fusarium Head Blight Automatic Non-Destructive Detection Based on Multi-Scale Imaging: A Technical Perspective. Plants 2024, 13, 1722. [Google Scholar] [CrossRef] [PubMed]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices. Remote Sens. Env. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Mirasi, A.; Mahmoudi, A.; Navid, H.; Valizadeh Kamran, K.; Asoodar, M.A. Evaluation of Sum-NDVI Values to Estimate Wheat Grain Yields Using Multi-Temporal Landsat OLI Data. Geocarto Int. 2021, 36, 1309–1324. [Google Scholar] [CrossRef]
- AgroChema. Available online: https://www.agrochema.lt/en/products-for-agriculture/winter-wheat-aurelius/ (accessed on 29 November 2024).
- Lechler GmbH IDTA. Available online: https://www.lechler.com/de-en/products-nozzles-spray-technology-systems/product-range/agriculture/nozzles-for-broadcast-spraying/idta (accessed on 29 November 2024).
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A Decimal Code for the Growth Stages of Cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- Vučajnk, F.; Španić, V.; Trdan., S.; Košir, I.J.; Ocvirk, M.; Vidrih, M. Performance of Symmetric Double Flat Fan Nozzles against Fusarium Head Blight in Durum Wheat. Agriculture 2024, 14, 2–16. [Google Scholar] [CrossRef]
- Spanic, V.; Sarcevic, H. Evaluation of Effective System for Tracing FHB Resistance in Wheat: An Editorial Commentary. Agronomy 2023, 13, 2116. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, Q.; Lin, F.; Yin, X.; Gu, C.; Qiao, H. Development and Evaluation of a New Spectral Disease Index to Detect Wheat Fusarium Head Blight Using Hyperspectral Imaging. Sensors 2020, 20, 2260. [Google Scholar] [CrossRef] [PubMed]
- Eiko, T.; Heege, H.J. Site-Specific Sensing for Fungicide Spraying. In Precision in Crop Farming; Springer: Dordrecht, The Netherlands, 2013; pp. 295–311. [Google Scholar] [CrossRef]
- Ren, Y.; Huang, W.; Ye, H.; Zhou, X.; Ma, H.; Dong, Y.; Shi, Y.; Geng, Y.; Huang, Y.; Jiao, Q.; et al. Quantitative Identification of Yellow Rust in Winter Wheat with a New Spectral Index: Development and Validation Using Simulated and Experimental Data. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102384. [Google Scholar] [CrossRef]
- Hassan, M.A.; Yang, M.; Rasheed, A.; Yang, G.; Reynolds, M.; Xia, X.; Xiao, Y.; He, Z. A Rapid Monitoring of NDVI across the Wheat Growth Cycle for Grain Yield Prediction Using a Multi-Spectral UAV Platform. Plant Sci. 2019, 282, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.W.; Zhang, P.P.; Zhou, X.X.; Wang, Z.X.; Xu, Z.Q.; Mao, W.; Li, W.X.; Huo, Z.Y.; Guo, W.S.; Yun, F. Quantitative Monitoring of Leaf Area Index in Wheat of Different Plant Types by Integrating NDVI and Beer-Lambert Law. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef]
- Aranguren, M.; Castellón, A.; Aizpurua, A. Wheat Yield Estimation with NDVI Values Using a Proximal Sensing Tool. Remote Sens. 2020, 12, 2749. [Google Scholar] [CrossRef]
- Cabrera-Bosquet, L.; Molero, G.; Stellacci, A.; Bort, J.; Nogués, S.; Araus, J. NDVI as a Potential Tool for Predicting Biomass, Plant Nitrogen Content and Growth in Wheat Genotypes Subjected to Different Water and Nitrogen Conditions. Cereal Res. Commun. 2011, 39, 147–159. [Google Scholar] [CrossRef]
- Voitik, A.; Vasyl, K.; Pushka, O.; Kutkovetska, T.; Shchur, T.; Kocira, S. Comparison of NDVI, NDRE, MSAVI and NDSI Indices for Early Diagnosis of Crop Problems. Agric. Eng. 2023, 27, 47–57. [Google Scholar] [CrossRef]
- Daliman, S.; Michael, M.J.A.; Rendra, P.P.R.; Sukiyah, E.; Hadian, M.S.D.; Sulaksana, N. Dual Vegetation Index Analysis and Spatial Assessment in Kota Bharu, Kelantan using GIS and Remote Sensing. BIO Web Conf. 2024, 131, 05009. [Google Scholar] [CrossRef]
- Gao, C.; Ji, X.; He, Q.; Gong, Z.; Sun, H.; Wen, T.; Guo, W. Monitoring of Wheat Fusarium Head Blight on Spectral and Textural Analysis of UAV Multispectral Imagery. Agriculture 2023, 13, 293. [Google Scholar] [CrossRef]
- Spanic, V.; Katanic, Z.; Sulyok, M.; Krska, R.; Puskas, K.; Vida, G.; Drezner, G.; Šarkanj, B. Multiple Fungal Metabolites Including Mycotoxins in Naturally Infected and Fusarium-Inoculated Wheat Samples. Microorganisms 2020, 8, 578. [Google Scholar] [CrossRef]
- Gold, K.M. Plant Disease Sensing: Studying Plant-Pathogen Interactions at Scale. mSystems 2021, 6, e0122821. [Google Scholar] [CrossRef]
- Peršić, V.; Božinović, I.; Varnica, I.; Babić, J.; Španić, V. Impact of Fusarium Head Blight on Wheat Flour Quality: Examination of Protease Activity, Technological Quality and Rheological Properties. Agronomy 2023, 13, 662. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, Y.; Pu, R.; Gonzalez-Moreno, P.; Yuan, L.; Wu, K.; Huang, W. Monitoring Plant Diseases and Pests through Remote Sensing Technology: A Review. Comput. Electron. Agric. 2019, 165, 104943. [Google Scholar] [CrossRef]
- Hnizil, O.; Baidani, A.; Khlila, I.; Nsarellah, N.; Laamari, A.; Amamou, A. Integrating NDVI, SPAD, and Canopy Temperature for Strategic Nitrogen and Seeding Rate Management to Enhance Yield, Quality, and Sustainability in Wheat Cultivation. Plants 2024, 13, 1574. [Google Scholar] [CrossRef]
- Mahlein, A.K.; Alisaac, E.; Al Masri, A.; Behmann, J.; Dehne, H.W.; Oerke, E.C. Comparison and Combination of Thermal, Fluorescence, and Hyperspectral Imaging for Monitoring Fusarium Head Blight of Wheat on Spikelet Scale. Sensors 2019, 19, 2281. [Google Scholar] [CrossRef] [PubMed]
- Almoujahed, M.B.; Rangarajan, A.K.; Whetton, R.L.; Vincke, D.; Eylenbosch, D.; Vermeulen, P.; Mouazen, A.M. Detection of Fusarium Head Blight in Wheat under Field Conditions Using a Hyperspectral Camera and Machine Learning. Comput. Electron. Agric. 2022, 203, 107456. [Google Scholar] [CrossRef]
- Huang, L.; Wu, K.; Huang, W.; Dong, Y.; Ma, H.; Liu, Y.; Liu, L. Detection of Fusarium Head Blight in Wheat Ears Using Continuous Wavelet Analysis and PSO-SVM. Agriculture 2021, 11, 998. [Google Scholar] [CrossRef]
- Di Bella, C.M.; Paruelo, J.M.; Becerra, J.E.; Bacour, C.; Baret, F. Effect of Senescent Leaves on NDVI-Based Estimates of FAPAR: Experimental and Modelling Evidences. Int. J. Remote Sens. 2004, 25, 5415–5427. [Google Scholar] [CrossRef]
- Anderegg, J.; Yu, K.; Aasen, H.; Walter, A.; Liebisch, F.; Hund, A. Spectral Vegetation Indices to Track Senescence Dynamics in Diverse Wheat Germplasm. Front. Plant Sci. 2020, 10, 1749. [Google Scholar] [CrossRef]
- Zhang, J.; Pu, R.; Yuan, L.; Huang, W.; Nie, C.; Yang, G. Integrating Remotely Sensed and Meteorological Observations to Forecast Wheat Powdery Mildew at a Regional Scale. IEEE J. Sel. Top. Appl. Earth Obs. 2014, 7, 4328–4339. [Google Scholar] [CrossRef]
- Robinson, N.A. Use of Normalised Difference Vegetation Index (NDVI) to assess tolerance of wheat cultivars to root-lesion nematodes (Pratylenchus thornei). Master’s Thesis, University of Southern Queensland, Darling Heights, QLD, Australia, 2019. [Google Scholar] [CrossRef]
- Du, X.; Li, Q.; Shang, J.; Liu, J.; Qian, B.; Jing, Q.; Dong, T.; Fan, D.; Wang, H.; Zhao, L.; et al. Detecting advanced stages of winter wheat yellow rust and aphid infection using RapidEye data in North China Plain. GIScience Remote Sens. 2019, 56, 1093–1113. [Google Scholar] [CrossRef]
- Oladejo, O.S.; Blesing, L.O.; Rotimi, A.D.; Oguntola, E. Assessment of plant health status using remote sensing and GIS techniques. Adv. Plants Agric. Res. 2018, 8, 517–525. [Google Scholar] [CrossRef]
- Dunn, B.W.; Dunn, T.S.; Hume, I.; Orchard, B.A.; Dehaan, R.; Robson, A. Remote Sensing PI Nitrogen Uptake in Rice. IREC Newsl. 2016, 195, 48–50. [Google Scholar]
- Suplito, M.R.; David, F.B.; Olalia, L.C. Relationship of vegetation indices and SPAD meter readings with sugarcane leaf nitrogen under Pampanga Mill District, Philippines condition. IOP Conf. Ser. Earth Environ. Sci. 2020, 540, 012016. [Google Scholar] [CrossRef]
- Lay, H.; Shao, Z.; Hor, S. Application of UAV-Based multispectral images for accessing oil palm trees health using online AI Platform. In Proceedings of the 2nd Intercontinental Geoinformation Days (IGD), Mersin, Turkey, 5–6 May 2021; pp. 155–158. [Google Scholar]
- Lemma, A.Z.; Hailemariam, F.M.; Abebe, K.A.; Bishaw, Z. Normalized difference vegetation index as screening trait to complement visual selections of durum wheat drought tolerant genotypes. Afr. J. Plant Sci. 2022, 16, 1–7. [Google Scholar] [CrossRef]
Source of Variation | DF | MS | |||
---|---|---|---|---|---|
DON | NDVI 1 | NDVI 2 | NDVI 3 | ||
Treatment | 4 | 41,740,892.8 *** | 0.00072 | 0.00368 | 0.000173 |
Replication | 3 | 7,271,865.8 *** | 0.00049 | 0.00789 * | 0.00006 |
Error | 12 | 443501 | 0.00073 | 0.00147 | 0.000093 |
Source of Variation | DF | MS | ||
---|---|---|---|---|
NDVI | NDRE | GNDVI | ||
Measurement point | 2 | 0.6780 *** | 0.1953 *** | 0.2530 *** |
Replication | 2 | 0.0044 * | 0.0052 | 0.0017 |
Treatment | 4 | 0.0018 | 0.0009 | 0.0014 |
Error | 36 | 0.0011 | 0.0031 | 0.0009 |
DON | NDVI1 | NDVI2 | NDVI3 | NDRE1 | NDRE2 | NDRE3 | GNDVI1 | GNDVI2 | GNDVI3 | |
---|---|---|---|---|---|---|---|---|---|---|
DON | 1.00 | −0.17 | −0.65 ** | −0.19 | −0.10 | −0.60 * | 0.15 | −0.14 | −0.58 * | 0.19 |
NDVI1 | −0.17 | 1.00 | 0.35 | −0.36 | 0.17 | 0.31 | −0.31 | 0.91 ** | 0.33 | −0.50 |
NDVI2 | −0.65 ** | 0.35 | 1.00 | 0.10 | −0.14 | 0.93 ** | −0.08 | 0.14 | 0.99 ** | −0.13 |
NDVI3 | −0.19 | −0.36 | 0.10 | 1.00 | −0.13 | 0.19 | 0.22 | −0.47 | 0.10 | 0.34 |
NDRE1 | −0.10 | 0.17 | −0.14 | −0.13 | 1.00 | −0.24 | −0.38 | 0.36 | −0.20 | −0.24 |
NDRE2 | −0.60 * | 0.31 | 0.93 ** | 0.19 | −0.24 | 1.00 | 0.10 | 0.08 | 0.90 ** | 0.04 |
NDRE3 | 0.15 | −0.31 | −0.08 | 0.22 | −0.38 | 0.10 | 1.00 | −0.40 | −0.08 | 0.90 ** |
GNDVI1 | −0.14 | 0.91 ** | 0.14 | −0.47 * | 0.36 | 0.08 | −0.40 | 1.00 | 0.11 | −0.55 * |
GNDVI2 | −0.58 * | 0.34 | 0.99 ** | 0.10 | −0.20 | 0.90 ** | −0.08 | 0.11 | 1.00 | −0.13 |
GNDVI3 | 0.19 | −0.50 | −0.13 | 0.34 | −0.24 | 0.04 | 0.90 ** | −0.55 * | −0.13 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrović, I.; Vučajnk, F.; Spanic, V. Detection of Fusarium Head Blight in Wheat Using NDVI from Multispectral UAS Measurements and Its Correlation with DON Contamination. AgriEngineering 2025, 7, 37. https://doi.org/10.3390/agriengineering7020037
Petrović I, Vučajnk F, Spanic V. Detection of Fusarium Head Blight in Wheat Using NDVI from Multispectral UAS Measurements and Its Correlation with DON Contamination. AgriEngineering. 2025; 7(2):37. https://doi.org/10.3390/agriengineering7020037
Chicago/Turabian StylePetrović, Igor, Filip Vučajnk, and Valentina Spanic. 2025. "Detection of Fusarium Head Blight in Wheat Using NDVI from Multispectral UAS Measurements and Its Correlation with DON Contamination" AgriEngineering 7, no. 2: 37. https://doi.org/10.3390/agriengineering7020037
APA StylePetrović, I., Vučajnk, F., & Spanic, V. (2025). Detection of Fusarium Head Blight in Wheat Using NDVI from Multispectral UAS Measurements and Its Correlation with DON Contamination. AgriEngineering, 7(2), 37. https://doi.org/10.3390/agriengineering7020037