Full Factorial Design Synthesis of Silver Nanoparticles Using Origanum vulgare
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals—Oregano Extract
2.2. Silver Nanoparticle Synthesis
2.3. Characterization Techniques
2.4. Statistical Analysis and Experimental Design
3. Results and Discussion
3.1. UV–Vis Spectra Analysis
3.2. Statistical Modeling of AgNP Synthesis
3.3. XRD
3.4. FTIR
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shaik, M.R.; Khan, M.; Kuniyil, M.; Al-Warthan, A.; Alkhathlan, H.Z.; Siddiqui, M.R.H.; Shaik, J.P.; Ahamed, A.; Mahmood, A.; Khan, M.; et al. Plant-Extract-Assisted Green Synthesis of Silver Nanoparticles Using Origanum vulgare L. Extract and Their Microbicidal Activities. Sustainability 2018, 10, 913. [Google Scholar] [CrossRef]
- Galatage, S.T.; Hebalkar, A.S.; Dhobale, S.V.; Mali, O.R.; Kumbhar, P.S.; Nikade, S.V.; Killedar, S.G. Silver Nanoparticles: Properties, Synthesis, Characterization, Applications and Future Trends. In Silver Micro-Nanoparticles—Properties, Synthesis, Characterization, and Applications; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Roy, S.; Rhim, J.W. Starch/Agar-Based Functional Films Integrated with Enoki Mushroom-Mediated Silver Nanoparticles for Active Packaging Applications. Food Biosci. 2022, 49, 101867. [Google Scholar] [CrossRef]
- Saravanan, A.; Kumar, P.S.; Hemavathy, R.V.; Jeevanantham, S.; Jawahar, M.J.; Neshaanthini, J.P.; Saravanan, R. A Review on Synthesis Methods and Recent Applications of Nanomaterial in Wastewater Treatment: Challenges and Future Perspectives. Chemosphere 2022, 307, 135713. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.; Guleria, S.; Salaria, K.H.; Majeed, A.; Sharma, N.; Pawar, K.D.; Thakur, V.K.; Gupta, V.K. Photocatalytic and Biological Properties of Silver Nanoparticles Synthesized Using Callistemon Lanceolatus Leaf Extract. Ind. Crops Prod. 2023, 202, 116951. [Google Scholar] [CrossRef]
- Barabadi, H.; Honary, S.; Ebrahimi, P.; Alizadeh, A.; Naghibi, F.; Saravanan, M. Optimization of Myco-Synthesized Silver Nanoparticles by Response Surface Methodology Employing Box-Behnken Design. Inorg. Nano-Met. Chem. 2019, 49, 33–43. [Google Scholar] [CrossRef]
- Balachandran, M.; Devanathan, S.; Muraleekrishnan, R.; Bhagawan, S.S. Optimizing Properties of Nanoclay-Nitrile Rubber (NBR) Composites Using Face Centred Central Composite Design. Mater. Des. 2012, 35, 854–862. [Google Scholar] [CrossRef]
- Ahani, M.; Khatibzadeh, M. Size Optimisation of Silver Nanoparticles Synthesised by Gallic Acid Using the Response Surface Methodology. Micro Nano Lett. 2020, 15, 403–408. [Google Scholar] [CrossRef]
- Singhal, M.; Chatterjee, S.; Kumar, A.; Syed, A.; Bahkali, A.H.; Gupta, N.; Nimesh, S. Exploring the Antibacterial and Antibiofilm Efficacy of Silver Nanoparticles Biosynthesized Using Punica Granatum Leaves. Molecules 2021, 26, 5762. [Google Scholar] [CrossRef]
- Alshammari, S.O.; Abd El Aty, A.A. Statically Controlled Mycogenic-Synthesis of Novel Biologically Active Silver-Nanoparticles Using Hafr Al-Batin Desert Truffles and Its Antimicrobial Efficacy against Pathogens. Saudi J. Biol. Sci. 2022, 29, 103334. [Google Scholar] [CrossRef]
- Kujur, A.; Daharwal, S.J. Box–Behnken Design Based Optimization of Process Variables for the Green Synthesis of 18-Beta–Glycyrrhetinic Acid Silver Nanoparticles and Evaluation of Its Antioxidant, Antimicrobial Activity. Int. J. Drug Deliv. Technol. 2023, 13, 501–509. [Google Scholar] [CrossRef]
- Naysmith, A.; Mian, N.S.; Rana, S. Development of Conductive Textile Fabric Using Plackett–Burman Optimized Green Synthesized Silver Nanoparticles and in Situ Polymerized Polypyrrole. Green Chem. Lett. Rev. 2023, 16, 2158690. [Google Scholar] [CrossRef]
- Sarkar, M.; Denrah, S.; Das, M.; Das, M. Statistical Optimization of Bio-Mediated Silver Nanoparticles Synthesis for Use in Catalytic Degradation of Some Azo Dyes. Chem. Phys. Impact 2021, 3, 100053. [Google Scholar] [CrossRef]
- Javed, B.; Nadhman, A.; Mashwani, Z.U.R. Optimization, Characterization and Antimicrobial Activity of Silver Nanoparticles against Plant Bacterial Pathogens Phyto-Synthesized by Mentha Longifolia. Mater. Res. Express 2020, 7, 085406. [Google Scholar] [CrossRef]
- Mikołajczak, A.; Ligaj, M.; Kobus-Cisowska, J. Temperature Optimization by Electrochemical Method for Improving Antioxidant Compound Extraction Efficiency from Origanum vulgare L. and Its Application in a Bread Production. Sustainability 2022, 14, 2801. [Google Scholar] [CrossRef]
- Hambardzumyan, S.; Sahakyan, N.; Petrosyan, M.; Nasim, M.J.; Jacob, C.; Trchounian, A. Origanum vulgare L. Extract-Mediated Synthesis of Silver Nanoparticles, Their Characterization and Antibacterial Activities. AMB Express 2020, 10, 162. [Google Scholar] [CrossRef]
- Sankar, R.; Karthik, A.; Prabu, A.; Karthik, S.; Shivashangari, K.S.; Ravikumar, V. Origanum Vulgare Mediated Biosynthesis of Silver Nanoparticles for Its Antibacterial and Anticancer Activity. Colloids Surf. B Biointerfaces 2013, 108, 80–84. [Google Scholar] [CrossRef]
- Baláž, M.; Balážová, Ľ.; Daneu, N.; Dutková, E.; Balážová, M.; Bujňáková, Z.; Shpotyuk, Y. Plant-Mediated Synthesis of Silver Nanoparticles and Their Stabilization by Wet Stirred Media Milling. Nanoscale Res. Lett. 2017, 12, 83. [Google Scholar] [CrossRef]
- Baláž, M.; Balážová, L.; Kováčová, M.; Daneu, N.; Salayová, A.; Bedlovičová, Z.; Tkáčiková, L. The Relationship between Precursor Concentration and Antibacterial Activity of Biosynthesized Ag Nanoparticles. Adv. Nano Res. 2019, 7, 125–134. [Google Scholar] [CrossRef]
- Salayová, A.; Bedlovičová, Z.; Daneu, N.; Baláž, M.; Lukáčová Bujňáková, Z.; Balážová, L.; Tkáčiková, L. Green Synthesis of Silver Nanoparticles with Antibacterial Activity Using Various Medicinal Plant Extracts: Morphology and Antibacterial Efficacy. Nanomaterials 2021, 11, 1005. [Google Scholar] [CrossRef]
- Rigopoulos, N.; Thomou, E.; Kouloumpis, A.; Lamprou, E.R.; Petropoulea, V.; Gournis, D.; Poulios, E.; Karantonis, H.C.; Giaouris, E. Optimization of Silver Nanoparticle Synthesis by Banana Peel Extract Using Statistical Experimental Design, and Testing of Their Antibacterial and Antioxidant Properties. Curr. Pharm. Biotechnol. 2019, 20, 858–873. [Google Scholar] [CrossRef]
- Belafhal, A. Shape of Spectral Lines: Widths and Equivalent Widths of the Voigt Profile. Opt. Commun. 2000, 177, 111–118. [Google Scholar] [CrossRef]
- El-Naggar, N.E.A.; Abdelwahed, N.A.M. Application of Statistical Experimental Design for Optimization of Silver Nanoparticles Biosynthesis by a Nanofactory Streptomyces Viridochromogenes. J. Microbiol. 2014, 52, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Karvela, E.; Makris, D.P.; Kalogeropoulos, N.; Karathanos, V.T. Deployment of Response Surface Methodology to Optimise Recovery of Grape (Vitis Vinifera) Stem Polyphenols. Talanta 2009, 79, 1311–1321. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.; Mulaba-Bafubiandi, A.F. Optimization of Process Variables for the Biosynthesis of Silver Nanoparticles by Aspergillus Wentii Using Statistical Experimental Design. Adv. Nat. Sci. Nanosci. Nanotechnol. 2016, 7, 045005. [Google Scholar] [CrossRef]
- Montgomery, D.C. Design and Analysis of Experiments, 8th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Asadzadeh, F.; Maleki-Kaklar, M.; Soiltanalinejad, N.; Shabani, F. Central Composite Design Optimization of Zinc Removal from Contaminated Soil, Using Citric Acid as Biodegradable Chelant. Sci. Rep. 2018, 8, 2633. [Google Scholar] [CrossRef]
- Amendola, V.; Bakr, O.M.; Stellacci, F. A Study of the Surface Plasmon Resonance of Silver Nanoparticles by the Discrete Dipole Approximation Method: Effect of Shape, Size, Structure, and Assembly. Plasmonics 2010, 5, 85–97. [Google Scholar] [CrossRef]
- Bindhu, M.R.; Umadevi, M. Synthesis of Monodispersed Silver Nanoparticles Using Hibiscus Cannabinus Leaf Extract and Its Antimicrobial Activity. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 101, 184–190. [Google Scholar] [CrossRef]
- Basiuk, V.A.; Basiuk, E.V. Green Processes for Nanotechnology: From Inorganic to Bioinspired Nanomaterials; Springer International Publishing: Cham, Switzerland, 2015; pp. 1–446. [Google Scholar] [CrossRef]
- Ibrahim, H.M.M. Green Synthesis and Characterization of Silver Nanoparticles Using Banana Peel Extract and Their Antimicrobial Activity against Representative Microorganisms. J. Radiat. Res. Appl. Sci. 2015, 8, 265–275. [Google Scholar] [CrossRef]
- Valenti, L.E.; Giacomelli, C.E. Stability of Silver Nanoparticles: Agglomeration and Oxidation in Biological Relevant Conditions. J. Nanoparticle Res. 2017, 19, 858–873. [Google Scholar] [CrossRef]
- Molleman, B.; Hiemstra, T. Surface Structure of Silver Nanoparticles as a Model for Understanding the Oxidative Dissolution of Silver Ions. Langmuir 2015, 31, 13361–13372. [Google Scholar] [CrossRef]
- Khan, M.A.M.; Kumar, S.; Ahamed, M.; Alrokayan, S.A.; AlSalhi, M.S. Structural and Thermal Studies of Silver Nanoparticles and Electrical Transport Study of Their Thin Films. Nanoscale Res. Lett. 2011, 6, 434. [Google Scholar] [CrossRef] [PubMed]
- Quinten, M. Optical Properties of Nanoparticle Systems; Wiley—Vch Verlag GmbH & Co. KGaA: Weinheim, Germany, 2011. [Google Scholar] [CrossRef]
- Dada, A.O.; Adekola, F.A.; Adeyemi, O.S.; Bello, O.M.; Oluwaseun, A.C.; Awakan, O.J.; Grace, F.-A.A. Exploring the Effect of Operational Factors and Characterization Imperative to the Synthesis of Silver Nanoparticles. In Silver Nanoparticles—Fabrication, Characterization and Applications; InTech: London, UK, 2018. [Google Scholar] [CrossRef]
- Rousta, M.H.; Ghasemi, N. Green Synthesis of Silver Nanoparticles Using a Mountain Plant Extract. Rev. Roum. Chim. 2019, 64, 143–152. [Google Scholar] [CrossRef]
- Marciniak, L.; Nowak, M.; Trojanowska, A.; Tylkowski, B.; Jastrzab, R. The Effect of Ph on the Size of Silver Nanoparticles Obtained in the Reduction Reaction with Citric and Malic Acids. Materials 2020, 13, 5444. [Google Scholar] [CrossRef] [PubMed]
- Handayani, W.; Ningrum, A.S.; Imawan, C. The Role of PH in Synthesis Silver Nanoparticles Using Pometia Pinnata (Matoa) Leaves Extract as Bioreductor. J. Phys. Conf. Ser. 2020, 1428, 012021. [Google Scholar] [CrossRef]
- Alqadi, M.K.; Abo Noqtah, O.A.; Alzoubi, F.Y.; Alzouby, J.; Aljarrah, K. PH Effect on the Aggregation of Silver Nanoparticles Synthesized by Chemical Reduction. Mater. Sci. Pol. 2014, 32, 107–111. [Google Scholar] [CrossRef]
- Kaushik, R.; Saran, S.; Isar, J.; Saxena, R.K. Statistical Optimization of Medium Components and Growth Conditions by Response Surface Methodology to Enhance Lipase Production by Aspergillus Carneus. J. Mol. Catal. B Enzym. 2006, 40, 121–126. [Google Scholar] [CrossRef]
- Supraja, N.; Prasad, T.N.V.K.V.; Soundariya, M.; Babujanarthanam, R. Synthesis, Characterization and Dose Dependent Antimicrobial and Anti-Cancerous Activity of Phycogenic Silver Nanoparticles against Human Hepatic Carcinoma (HepG2) Cell Line. AIMS Bioeng 2016, 3, 425–440. [Google Scholar] [CrossRef]
- Umadevi, M.; Shalini, S.; Bindhu, M.R. Synthesis of Silver Nanoparticle Using D. Carota Extract. Adv. Nat. Sci. Nanosci. Nanotechnol. 2012, 3, 025008. [Google Scholar] [CrossRef]
- Raut Rajesh, W.; Lakkakula Jaya, R.; Kolekar Niranjan, S.; Mendhulkar Vijay, D.; Kashid Sahebrao, B. Phytosynthesis of Silver Nanoparticle Using Gliricidia Sepium (Jacq.). Curr. Nanosci. 2009, 5, 117–122. [Google Scholar] [CrossRef]
- Pavani, K.V.; Gayathramma, K.; Banerjee, A.; Suresh, S. Phyto-Synthesis of Silver Nanoparticles Using Extracts of Ipomoea iNdica Flowers. Am. J. Nanomater. 2013, 1, 5–8. [Google Scholar] [CrossRef]
- Al-Khedhairy, A.A.; Wahab, R. Silver Nanoparticles: An Instantaneous Solution for Anticancer Activity against Human Liver (HepG2) and Breast (MCF-7) Cancer Cells. Metals 2022, 12, 148. [Google Scholar] [CrossRef]
- Shameli, K.; Ahmad, M.B.; Zamanian, A.; Sangpour, P.; Shabanzadeh, P.; Abdollahi, Y.; Zargar, M. Green Biosynthesis of Silver Nanoparticles Using Curcuma Longa Tuber Powder. Int. J. Nanomed. 2012, 7, 5603–5610. [Google Scholar] [CrossRef] [PubMed]
- Vanaja, M.; Annadurai, G. Coleus Aromaticus Leaf Extract Mediated Synthesis of Silver Nanoparticles and Its Bactericidal Activity. Appl. Nanosci. 2013, 3, 217–223. [Google Scholar] [CrossRef]
- Mohanta, Y.K.; Panda, S.K.; Jayabalan, R.; Sharma, N.; Bastia, A.K.; Mohanta, T.K. Antimicrobial, Antioxidant and Cytotoxic Activity of Silver Nanoparticles Synthesized by Leaf Extract of Erythrina Suberosa (Roxb.). Front. Mol. Biosci. 2017, 4, 14. [Google Scholar] [CrossRef] [PubMed]
- Kora, A.J.; Arunachalam, J. Green Fabrication of Silver Nanoparticles by Gum Tragacanth (Astragalus Gummifer): A Dual Functional Reductant and Stabilizer. J. Nanomater. 2012, 2012, 869765. [Google Scholar] [CrossRef]
- Gharibshahi, L.; Saion, E.; Gharibshahi, E.; Shaari, A.; Matori, K. Structural and Optical Properties of Ag Nanoparticles Synthesized by Thermal Treatment Method. Materials 2017, 10, 402. [Google Scholar] [CrossRef]
- Xiang, F.; Zhao, Q.; Zhao, K.; Pei, H.; Tao, F. The Efficacy of Composite Essential Oils against Aflatoxigenic Fungus Aspergillus Flavus in Maize. Toxins 2020, 12, 562. [Google Scholar] [CrossRef]
- Bunghez, F.; Morar, M.A.; Pop, R.M.; Romanciuc, F.; Csernatoni, F.; Fetea, F.; Diaconeasa, Z.; Socaciu, C. Comparative Phenolic Fingerprint and LC-ESI+QTOF-MS Composition of Oregano and Rosemary Hydrophilic Extracts in Relation to Their Antibacterial Effect. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca. Food Sci. Technol. 2015, 72, 1–8. [Google Scholar] [CrossRef]
- Yoncheva, K.; Benbassat, N.; Zaharieva, M.M.; Dimitrova, L.; Kroumov, A.; Spassova, I.; Kovacheva, D.; Najdenski, H.M. Improvement of the Antimicrobial Activity of Oregano Oil by Encapsulation in Chitosan–Alginate Nanoparticles. Molecules 2021, 26, 7017. [Google Scholar] [CrossRef]
Run | X1 (Cext% v/v) | X2 ( mM) | X3 (CNaOH mM) | Responses | ||
---|---|---|---|---|---|---|
λ0 (nm) | A (a.u. *) | FWHM (nm) | ||||
1 | 0 (2) | 0 (1) | 0 (1) | 412.9 | 129.4 | 93.7 |
2 | −1 (0.8) | 1 (1.5) | 1 (2) | 405.8 | 190.5 | 94.2 |
3 | −1 (0.8) | 0 (1) | −1 (0) | 439.4 | 34.7 | 130.7 |
4 | −1 (0.8) | 1 (1.5) | −1 (0) | 442.7 | 31 | 97.4 |
5 | −1 (0.8) | −1 (0.5) | −1 (0) | 438.1 | 33.5 | 140.2 |
6 | 0 (2) | −1 (0.5) | −1 (0) | 441.5 | 38.5 | 101.8 |
7 | 0 (2) | −1 (0.5) | 0 (1) | 411.3 | 63.5 | 86.4 |
8 | 1 (3.2) | 1 (1.5) | 1 (2) | 412.2 | 214.2 | 98.6 |
9 | 1 (3.2) | 1 (1.5) | 0 (1) | 415.2 | 170.4 | 102.4 |
10 | 0 (2) | 0 (1) | 1 (2) | 407.5 | 141.9 | 93.5 |
11 | −1 (0.8) | −1 (0.5) | 0 (1) | 407.1 | 71.9 | 85.9 |
12 | 1 (3.2) | 0 (1) | −1 (0) | 449.4 | 97.5 | 128.9 |
13 | 0 (2) | −1 (0.5) | 1 (2) | 405.2 | 96.1 | 112.8 |
14 | 0 (2) | 1 (1.5) | 0 (1) | 414.4 | 147.9 | 98.5 |
15 | 1 (3.2) | 0 (1) | 1 (2) | 409.2 | 154.1 | 103.4 |
16 | 1 (3.2) | 1 (1.5) | −1 (0) | 451.1 | 76.4 | 106.3 |
17 | 0 (2) | 0 (1) | −1 (0) | 446.1 | 26.9 | 84.3 |
18 | 1 (3.2) | −1 (0.5) | 1 (2) | 408.2 | 92.8 | 115.9 |
19 | 1 (3.2) | −1 (0.5) | 0 (1) | 411.1 | 71.6 | 97.8 |
20 | −1 (0.8) | −1 (0.5) | 1 (2) | 408.2 | 97.8 | 133.7 |
21 | −1 (0.8) | 1 (1.5) | 0 (1) | 412.1 | 119 | 95.3 |
22 | 1 (3.2) | 0 (1) | 0 (1) | 412.3 | 145.4 | 98.9 |
23 | −1 (0.8) | 0 (1) | 0 (1) | 409 | 106.5 | 88.4 |
24 | −1 (0.8) | 0 (1) | 1 (2) | 407.6 | 152.2 | 102.8 |
25 | 0 (2) | 1 (1.5) | 1 (2) | 409.1 | 194.9 | 94.2 |
26 | 1 (3.2) | −1 (0.5) | −1 (0) | 441.1 | 57.4 | 97.9 |
27 | 0 (2) | 1 (1.5) | −1 (0) | 450.1 | 42.1 | 98.8 |
Source | df | SS | MS | F * | p-Value |
---|---|---|---|---|---|
Model | 9 | 22,322.92 | 2480.32 | 138.19 | <0.0001 |
Linear | |||||
X1 | 1 | 264.48 | 264.48 | 14.74 | |
X2 | 1 | 278.24 | 278.24 | 15.50 | |
X3 | 1 | 17,798.83 | 17,798.83 | 991.68 | |
Square | |||||
1 | 3813.3 | 3813.3 | 212.46 | ||
Interaction | |||||
X2X3 | 1 | 77.74 | 77.74 | 4.33 | |
Error | 71 | 1274.32 | 17.95 | ||
Lack of fit | 17 | 117.17 | 6.89 | 0.3217 | |
Pure error | 54 | 1157.15 | 21.43 | ||
Total | 80 | 23,597.24 |
Source | df | SS | MS | F * | p-Value |
---|---|---|---|---|---|
Model | 9 | 231,000 | 25,662.02 | 76.05 | <0.0001 |
Linear | |||||
X1 | 1 | 9827.11 | 9827.11 | 29.12 | |
X2 | 1 | 52,886.07 | 52,886.07 | 156.73 | |
X3 | 1 | 133,900 | 133,900 | 396.83 | |
Square | |||||
1 | 1556.99 | 1556.99 | 4.61 | ||
1 | 4321.69 | 4321.69 | 12.81 | ||
Interaction | |||||
X1X2 | 1 | 2595.25 | 2595.25 | 7.69 | |
X1X3 | 1 | 3111.7 | 3111.7 | 9.22 | |
X2X3 | 1 | 21,421.51 | 21,421.51 | 63.48 | |
Error | 71 | 23,958.08 | 337.44 | ||
Lack of fit | 17 | 6523.82 | 383.75 | 1.19 | |
Pure error | 54 | 17,434.25 | 322.86 | ||
Total | 80 | 254,900 |
Source | df | SS | MS | * F | p-Value |
---|---|---|---|---|---|
Model | 9 | 8440.95 | 937.88 | 1.56 | 0.1435 |
Linear | |||||
X3 | 1 | 230.88 | 230.88 | 0.3847 | |
Square | |||||
1 | 3220.51 | 3220.51 | 5.37 | ||
Error | 71 | 42,616.33 | 600.23 | ||
Lack of fit | 17 | 8700.41 | 511.79 | 0.8149 | |
Pure error | 54 | 33,915.92 | 628.07 | ||
Total | 80 | 51,057.28 |
Model Term | CE | Std. Error |
---|---|---|
Intercept | 412.4 | 1.25 |
X1 | 2.21 | 0.5765 |
X2 | 2.27 | 0.5765 |
X3 | −18.16 | 0.5765 |
X2X3 | −1.47 | 0.7061 |
14.56 | 0.9986 |
Model Term | CE | Std. Error |
---|---|---|
Intercept | 114.44 | 5.40 |
X1 | 13.49 | 2.5 |
X2 | 31.29 | 2.5 |
X3 | 49.80 | 2.5 |
X1X2 | 8.49 | 2.39 |
X1X3 | −9.30 | −15.40 |
X2X3 | 24.39 | 18.29 |
−9.30 | −17.93 | |
−15.49 | −24.13 |
Peak Wavelength λ0 | Peak Area A | ||
---|---|---|---|
Term | Per. Ef (%) | Term | Per. Ef (%) |
X1 | 0.88 | X1 | 3.85 |
X2 | 0.93 | X2 | 20.74 |
X3 | 59.53 | X3 | 52.53 |
X2X3 | 0.39 | X1X2 | 1.53 |
38.27 | X1X3 | 1.83 | |
- | - | X2X3 | 12.6 |
- | - | 1.83 | |
- | - | 5.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rigopoulos, N.; Gkaliouri, C.M.; Sakavitsi, V.; Gournis, D. Full Factorial Design Synthesis of Silver Nanoparticles Using Origanum vulgare. Reactions 2023, 4, 505-517. https://doi.org/10.3390/reactions4030030
Rigopoulos N, Gkaliouri CM, Sakavitsi V, Gournis D. Full Factorial Design Synthesis of Silver Nanoparticles Using Origanum vulgare. Reactions. 2023; 4(3):505-517. https://doi.org/10.3390/reactions4030030
Chicago/Turabian StyleRigopoulos, Nickolas, Christina Megetho Gkaliouri, Viktoria Sakavitsi, and Dimitrios Gournis. 2023. "Full Factorial Design Synthesis of Silver Nanoparticles Using Origanum vulgare" Reactions 4, no. 3: 505-517. https://doi.org/10.3390/reactions4030030
APA StyleRigopoulos, N., Gkaliouri, C. M., Sakavitsi, V., & Gournis, D. (2023). Full Factorial Design Synthesis of Silver Nanoparticles Using Origanum vulgare. Reactions, 4(3), 505-517. https://doi.org/10.3390/reactions4030030