Chlorophyll Sensitization of TiO2: A Mini-Review
Abstract
:1. Introduction
2. Chlorophyll
2.1. Chlorophyll-a and Chlorophyll-b Concentration Estimations
2.2. Extraction of Chlorophyll
3. Chlorophyll Fixation on TiO2
3.1. Chlorophyll-Modified TiO2 as Photocatalyst
3.2. Chlorophyll Sensitization in TiO2 Solar Cells
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D.W. Understanding TiO2 photocatalysis: Mechanisms and Materials. Chem. Rev. 2014, 114, 9919–9986. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, K.; Irie, H.; Fujishima, A. TiO2 Photocatalysis: A Historical Overview and Future Prospects. Jpn. J. Appl. Phys. 2005, 44, 8269. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical Evidence for the Mechanism of the Primary Stage of Photosynthesis. Bull. Chem. Soc. Jpn. 1971, 44, 1148–1150. [Google Scholar] [CrossRef]
- Augugliaro, V.; Bellardita, M.; Loddo, V.; Palmisano, G.; Palmisano, L.; Yurdakal, S. Overview on Oxidation Mechanisms of Organic Compounds by TiO2 in Heterogeneous Photocatalysis. J. Photochem. Photobiol. C Photochem. Rev. 2012, 13, 224–245. [Google Scholar] [CrossRef]
- Varma, K.S.; Tayade, R.J.; Shah, K.J.; Joshi, P.A.; Shukla, A.D.; Gandhi, V.G. Photocatalytic Degradation of Pharmaceutical and Pesticide Compounds (PPCs) Using Doped TiO2 Nanomaterials: A Review. Water-Energy Nexus 2020, 3, 46–61. [Google Scholar] [CrossRef]
- Murgolo, S.; De Ceglie, C.; Di Iaconi, C.; Mascolo, G. Novel TiO2-Based Catalysts Employed in Photocatalysis and Photoelectrocatalysis for Effective Degradation of Pharmaceuticals (PhACs) in Water: A Short Review. Curr. Opin. Green. Sustain. Chem. 2021, 30, 100473. [Google Scholar] [CrossRef]
- Shoneye, A.; Sen Chang, J.; Chong, M.N.; Tang, J. Recent Progress in Photocatalytic Degradation of Chlorinated Phenols and Reduction of Heavy Metal Ions in Water by TiO2-Based Catalysts. Int. Mater. Rev. 2022, 67, 47–64. [Google Scholar] [CrossRef]
- Bono, N.; Ponti, F.; Punta, C.; Candiani, G. Effect of UV Irradiation and TiO2-Photocatalysis on Airborne Bacteria and Viruses: An Overview. Materials 2021, 14, 1075. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.H.; Huang, C.W.; Wu, J.C.S. Hydrogen Production from Semiconductor-Based Photocatalysis via Water Splitting. Catalysts 2012, 2, 490–516. [Google Scholar] [CrossRef]
- Chiarello, G.L.; Dozzi, M.V.; Selli, E. TiO2-Based Materials for Photocatalytic Hydrogen Production. J. Energy Chem. 2017, 26, 250–258. [Google Scholar] [CrossRef]
- Kumaravel, V.; Mathew, S.; Bartlett, J.; Pillai, S.C. Photocatalytic Hydrogen Production Using Metal Doped TiO2: A Review of Recent Advances. Appl. Catal. B 2019, 244, 1021–1064. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, W.; Wang, X.; Zhang, X.; Chen, H.; Hu, H.; Liu, L.; Ye, J.; Wang, D. Enhanced Photocatalytic CO2 Reduction over TiO2 Using Metalloporphyrin as the Cocatalyst. Catalysts 2020, 10, 654. [Google Scholar] [CrossRef]
- Roy, N.; Suzuki, N.; Terashima, C.; Fujishima, A. Recent Improvements in the Production of Solar Fuels: From CO2 Reduction to Water Splitting and Artificial Photosynthesis. Bull. Chem. Soc. Jpn. 2019, 92, 178–192. [Google Scholar] [CrossRef]
- Gust, D.; Moore, T.A.; Moore, A.L. Solar Fuels via Artificial Photosynthesis. Acc. Chem. Res. 2009, 42, 1890–1898. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Zhou, C.; Ma, Z.; Yang, X. Fundamentals of TiO2 Photocatalysis: Concepts, Mechanisms, and Challenges. Adv. Mater. 2019, 31, 1901997. [Google Scholar] [CrossRef] [PubMed]
- Bora, L.V.; Mewada, R.K. Visible/Solar Light Active Photocatalysts for Organic Effluent Treatment: Fundamentals, Mechanisms and Parametric Review. Renew. Sustain. Energy Rev. 2017, 76, 1393–1421. [Google Scholar] [CrossRef]
- Linsebigler, A.L.; Lu, G.; Yates, J.T. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chem. Rev. 1995, 95, 735–758. [Google Scholar] [CrossRef]
- Chen, D.; Cheng, Y.; Zhou, N.; Chen, P.; Wang, Y.; Li, K.; Huo, S.; Cheng, P.; Peng, P.; Zhang, R.; et al. Photocatalytic Degradation of Organic Pollutants Using TiO2-Based Photocatalysts: A Review. J. Clean. Prod. 2020, 268, 121725. [Google Scholar] [CrossRef]
- Krishnan, S.; Shriwastav, A. Application of TiO2 Nanoparticles Sensitized with Natural Chlorophyll Pigments as Catalyst for Visible Light Photocatalytic Degradation of Methylene Blue. J. Environ. Chem. Eng. 2021, 9, 104699. [Google Scholar] [CrossRef]
- Finnie, K.S.; Bartlett, J.R.; Woolfrey, J.L. Vibrational Spectroscopic Study of the Coordination of (2,2‘-Bipyridyl-4,4‘-Dicarboxylic Acid)Ruthenium(II) Complexes to the Surface of Nanocrystalline Titania. Langmuir 1998, 14, 2744–2749. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, Y.; Zhang, M.; Shen, T.; Li, Y.; Zhu, D. Photoinduced Interaction between Fluorescein Ester Derivatives and CdS Colloid. J. Colloid. Interface Sci. 2003, 264, 290–295. [Google Scholar] [CrossRef] [PubMed]
- Kathiravan, A.; Chandramohan, M.; Renganathan, R.; Sekar, S. Cyanobacterial Chlorophyll as a Sensitizer for Colloidal TiO2. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2009, 71, 1783–1787. [Google Scholar] [CrossRef] [PubMed]
- Mujtahid, F.; Gareso, P.L.; Armynah, B.; Tahir, D. Review Effect of Various Types of Dyes and Structures in Supporting Performance of Dye-Sensitized Solar Cell TiO2-Based Nanocomposites. Int. J. Energy Res. 2022, 46, 726–742. [Google Scholar] [CrossRef]
- Karim, N.A.; Mehmood, U.; Zahid, H.F.; Asif, T. Nanostructured Photoanode and Counter Electrode Materials for Efficient Dye-Sensitized Solar Cells (DSSCs). Solar Energy 2019, 185, 165–188. [Google Scholar] [CrossRef]
- Hosseinnezhad, M.; Gharanjig, K.; Yazdi, M.K.; Zarrintaj, P.; Moradian, S.; Saeb, M.R.; Stadler, F.J. Dye-Sensitized Solar Cells Based on Natural Photosensitizers: A Green View from Iran. J. Alloys Compd. 2020, 828, 154329. [Google Scholar] [CrossRef]
- Richhariya, G.; Kumar, A.; Tekasakul, P.; Gupta, B. Natural Dyes for Dye Sensitized Solar Cell: A Review. Renew. Sustain. Energy Rev. 2017, 69, 705–718. [Google Scholar] [CrossRef]
- Omar, A.; Ali, M.S.; Abd Rahim, N. Electron Transport Properties Analysis of Titanium Dioxide Dye-Sensitized Solar Cells (TiO2-DSSCs) Based Natural Dyes Using Electrochemical Impedance Spectroscopy Concept: A Review. Sol. Energy 2020, 207, 1088–1121. [Google Scholar] [CrossRef]
- Mukhokosi, E.P.; Maaza, M.; Tibenkana, M.; Botha, N.L.; Namanya, L.; Madiba, I.G.; Okullo, M. Optical Absorption and Photoluminescence Properties of Cucurbita Maxima Dye Adsorption on TiO2nanoparticles. Mater. Res. Express 2023, 10, 046203. [Google Scholar] [CrossRef]
- Ahliha, A.H.; Nurosyid, F.; Supriyanto, A.; Kusumaningsih, T. The Chemical Bonds Effect of Anthocyanin and Chlorophyll Dyes on TiO2 for Dye-Sensitized Solar Cell (DSSC). In Journal of Physics: Conference Series, Proceedings of the International Conference on Science and Applied Science 2017, Solo, Indonesia, 29 July 2017; Institute of Physics Publishing: Bristol, UK, 2017; Volume 909. [Google Scholar]
- Haghighatzadeh, A. Comparative Analysis on Optical and Photocatalytic Properties of Chlorophyll/Curcumin-Sensitized TiO2 Nanoparticles for Phenol Degradation. Bull. Mater. Sci. 2020, 43, 52. [Google Scholar] [CrossRef]
- Arof, A.K.; Ping, T.L. Chlorophyll as Photosensitizer in Dye-Sensitized Solar Cells. In Chlorophyll; InTech: London, UK, 2017. [Google Scholar]
- Krishnan, S.; Shriwastav, A. Chlorophyll Sensitized and Salicylic Acid Functionalized TiO2 Nanoparticles as a Stable and Efficient Catalyst for the Photocatalytic Degradation of Ciprofloxacin with Visible Light. Environ. Res. 2023, 216, 114568. [Google Scholar] [CrossRef]
- Phongamwong, T.; Chareonpanich, M.; Limtrakul, J. Role of Chlorophyll in Spirulina on Photocatalytic Activity of CO2 Reduction under Visible Light over Modified N-Doped TiO2 Photocatalysts. Appl. Catal. B 2015, 168–169, 114–124. [Google Scholar] [CrossRef]
- Shen, S.; Wang, Y.; Dong, J.; Zhang, R.; Parikh, A.; Chen, J.G.; Hu, D. Mimicking Thylakoid Membrane with Chlorophyll/TiO2/Lipid Co-Assembly for Light-Harvesting and Oxygen Releasing. ACS Appl. Mater. Interfaces 2021, 13, 11461–11469. [Google Scholar] [CrossRef] [PubMed]
- Gross, J. Pigments in Vegetables; Springer: Boston, MA, USA, 1991; ISBN 978-1-4613-5842-8. [Google Scholar]
- Murata, N. Control of Excitation Transfer in Photosynthesis II. Magnesium Ion-Dependent Distribution of Excitation Energy between Two Pigment Systems in Spinach Chloroplasts. Biochim. Biophys. Acta BBA 1969, 189, 171–181. [Google Scholar] [CrossRef]
- Jamali Jaghdani, S.; Jahns, P.; Tränkner, M. The Impact of Magnesium Deficiency on Photosynthesis and Photoprotection in Spinacia Oleracea. Plant Stress 2021, 2, 100040. [Google Scholar] [CrossRef]
- Mary Rosana, N.T.; Joshua Amarnath, D.; Senthil Kumar, P.; Vincent Joseph, K.L. Potential of Plant-Based Photosensitizers in Dye-Sensitized Solar Cell Applications. Environ. Prog. Sustain. Energy 2020, 39, e13351. [Google Scholar] [CrossRef]
- Pai, A.R.; Nair, B. Synthesis and Characterization of a Binary Oxide ZrO2-TiO2 and Its Application in Chlorophyll Dye-Sensitized Solar Cell with Reduced Graphene Oxide as Counter Electrodes. Bull. Mater. Sci. 2015, 38, 1129–1133. [Google Scholar] [CrossRef]
- Christwardana, M.; Septevani, A.A.; Yoshi, L.A. Outstanding Photo-Bioelectrochemical Cell by Integrating TiO2 and Chlorophyll as Photo-Bioanode for Sustainable Energy Generation. Int. J. Renew. Energy Dev. 2022, 11, 385–391. [Google Scholar] [CrossRef]
- Mahadik, S.A.; Yadav, H.M.; Mahadik, S.S. Surface Properties of Chlorophyll-a Sensitized TiO2 Nanorods for Dye-Sensitized Solar Cells Applications. Colloids Interface Sci. Commun. 2022, 46, 100558. [Google Scholar] [CrossRef]
- Heidari, A.; Safa, K.D.; Teimuri-Mofrad, R. Chlorophyll B-Modified TiO2 Nanoparticles for Visible-Light-Induced Photocatalytic Synthesis of New Tetrahydroquinoline Derivatives. Mol. Catal. 2023, 547, 113338. [Google Scholar] [CrossRef]
- Chen, C.; Gong, N.; Qu, F.; Gao, Y.; Fang, W.; Sun, C.; Men, Z. Effects of Carotenoids on the Absorption and Fluorescence Spectral Properties and Fluorescence Quenching of Chlorophyll a. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 204, 440–445. [Google Scholar] [CrossRef]
- Ungureanu, E.M.; Tatu, M.L.; Georgescu, E.; Boscornea, C.; Popa, M.M.; Stanciu, G. Influence of the Chemical Structure and Solvent Polarity on the Fluorescence of 3-Aryl-7-Benzoyl-Pyrrolo [1,2-c]Pyrimidines. Dyes Pigments 2020, 174, 108023. [Google Scholar] [CrossRef]
- Faiz, M.R.; Widhiyanuriyawan, D.; Siswanto, E.; Wardana, I.N.G. Theoretical Study on the Effect of Solvents in Chlorophyll Solution for Dye-Sensitized Solar Cell. In IOP Conference Series: Materials Science and Engineering, Proceedings of the International Conference on Chemistry and Material Science (IC2MS) 2017, Malang, Indonesia, 4–5 November 2017; Institute of Physics Publishing: Bristol, UK, 2018; Volume 299, p. 299. [Google Scholar]
- Sabagh, S.; Izadyar, M.; Arkan, F. Insight into Incident Photon to Current Conversion Efficiency in Chlorophylls. Int. J. Quantum Chem. 2021, 121, e26483. [Google Scholar] [CrossRef]
- Qiao, L.; Tang, W.; Gao, D.; Zhao, R.; An, L.; Li, M.; Sun, H.; Song, D. UAV-Based Chlorophyll Content Estimation by Evaluating Vegetation Index Responses under Different Crop Coverages. Comput. Electron. Agric. 2022, 196, 106775. [Google Scholar] [CrossRef]
- Al-Alwani, M.A.M.; Mohamad, A.B.; Kadhum, A.A.H.; Ludin, N.A.; Safie, N.E.; Razali, M.Z.; Ismail, M.; Sopian, K. Natural Dye Extracted from Pandannus Amaryllifolius Leaves as Sensitizer in Fabrication of Dye-Sensitized Solar Cells. Int. J. Electrochem. Sci. 2017, 12, 747–761. [Google Scholar] [CrossRef]
- Najihah, M.Z.; Noor, I.M.; Winie, T. Long-Run Performance of Dye-Sensitized Solar Cell Using Natural Dye Extracted from Costus Woodsonii Leaves. Opt. Mater. 2022, 123, 111915. [Google Scholar] [CrossRef]
- Tsui, L.K.; Huang, J.; Sabat, M.; Zangari, G. Visible Light Sensitization of TiO2 Nanotubes by Bacteriochlorophyll-C Dyes for Photoelectrochemical Solar Cells. ACS Sustain. Chem. Eng. 2014, 2, 2097–2101. [Google Scholar] [CrossRef]
- Phongamwong, T.; Donphai, W.; Prasitchoke, P.; Rameshan, C.; Barrabés, N.; Klysubun, W.; Rupprechter, G.; Chareonpanich, M. Novel Visible-Light-Sensitized Chl-Mg/P25 Catalysts for Photocatalytic Degradation of Rhodamine B. Appl. Catal. B 2017, 207, 326–334. [Google Scholar] [CrossRef]
- Zakaria, P.N.M.; Noor, I.S.M.; Winie, T. Caulerpa lentillifera Seaweed Extract as Natural Sensitizer for Dye-Sensitized Solar Cell. Macromol. Symp. 2023, 407, 2100359. [Google Scholar] [CrossRef]
- Giang, N.T.H.; Thinh, N.T.; Hai, N.D.; Loc, P.T.; Thu, T.N.A.; Loan, N.H.P.; Quang, D.M.; Anh, L.D.; Truong An, V.N.T.; Phong, M.T.; et al. Application of TiO2 Nanoparticles with Natural Chlorophyll as the Catalyst for Visible Light Photocatalytic Degradation of Methyl Orange and Antibacterial. Inorg. Chem. Commun. 2023, 150, 110513. [Google Scholar] [CrossRef]
- Ma, T.; Inoue, K.; Yao, K.; Noma, H.; Shuji, T.; Abe, E.; Yu, J.; Wang, X.; Zhang, B. Photoelectrochemical Properties of TiO2 Electrodes Sensitized by Porphyrin Derivatives with Different Numbers of Carboxyl Groups. J. Electroanal. Chem. 2002, 537, 31–38. [Google Scholar] [CrossRef]
- Amao, Y.; Kato, K. Chlorophyll Assembled Electrode for Photovoltaic Conversion Device. Electrochim. Acta 2007, 53, 42–45. [Google Scholar] [CrossRef]
- Hashimoto, Y.; Suzuki, H.; Kondo, T.; Abe, R.; Tamiaki, H. Visible-Light-Induced Hydrogen Evolution from Water on Hybrid Photocatalysts Consisting of Synthetic Chlorophyll-a Derivatives with a Carboxy Group in the 20-Substituent Adsorbed on Semiconductors. J. Photochem. Photobiol. A Chem. 2022, 426, 113750. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, L.; Pan, L.; Duan, S.; Tamai, N.; Sasaki, S.I.; Tamiaki, H.; Sanehira, Y.; Wei, Y.; Chen, G.; et al. Charge Transfer Dynamics in Chlorophyll-Based Biosolar Cells. Phys. Chem. Chem. Phys. 2019, 21, 22563–22568. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Dong, W.; Zhang, J.; Xie, Z.; Li, W.; Zhang, H.; Zhang, X.; Chen, P.; Zhou, W.; Lei, B. TiO2/Chlorophyll S-Scheme Composite Photocatalyst with Improved Photocatalytic Bactericidal Performance. ACS Appl. Mater. Interfaces 2021, 13, 39446–39457. [Google Scholar] [CrossRef] [PubMed]
- Valadez-Renteria, E.; Oliva, J.; Rodriguez-Gonzalez, V. A Sustainable and Green Chlorophyll/TiO2:W Composite Supported on Recycled Plastic Bottle Caps for the Complete Removal of Rhodamine B Contaminant from Drinking Water. J. Environ. Manage 2022, 315, 115204. [Google Scholar] [CrossRef] [PubMed]
- Patiño-Camelo, K.; Diaz-Uribe, C.; Gallego-Cartagena, E.; Vallejo, W.; Martinez, V.; Quiñones, C.; Hurtado, M.; Schott, E. Cyanobacterial Biomass Pigments as Natural Sensitizer for TiO2 Thin Films. Int. J. Photoenergy 2019, 2019, 7184327. [Google Scholar] [CrossRef]
- Cabir, B.; Yurderi, M.; Caner, N.; Agirtas, M.S.; Zahmakiran, M.; Kaya, M. Methylene Blue Photocatalytic Degradation under Visible Light Irradiation on Copper Phthalocyanine-Sensitized TiO2 Nanopowders. Mater. Sci. Eng. B Solid. State Mater. Adv. Technol. 2017, 224, 9–17. [Google Scholar] [CrossRef]
- Yang, Y.; Jankowiak, R.; Lin, C.; Pawlak, K.; Reus, M.; Holzwarth, A.R.; Li, J. Effect of the LHCII Pigment-Protein Complex Aggregation on Photovoltaic Properties of Sensitized TiO2 Solar Cells. Phys. Chem. Chem. Phys. 2014, 16, 20856–20865. [Google Scholar] [CrossRef]
- Li, Y.; Yoo, K.; Lee, D.K.; Kim, J.Y.; Son, H.J.; Kim, J.H.; Lee, C.H.; Míguez, H.; Ko, M.J. Synergistic Strategies for the Preparation of Highly Efficient Dye-Sensitized Solar Cells on Plastic Substrates: Combination of Chemical and Physical Sintering. RSC Adv. 2015, 5, 76795–76803. [Google Scholar] [CrossRef]
- Amao, Y.; Yamada, Y.; Aoki, K. Preparation and Properties of Dye-Sensitized Solar Cell Using Chlorophyll Derivative Immobilized TiO2 Film Electrode. J. Photochem. Photobiol. A Chem. 2004, 164, 47–51. [Google Scholar] [CrossRef]
Source | Solvent | Contact Time | Separation | Ref. |
---|---|---|---|---|
Spinach leaves | 90% aqueous acetone | 2 h | Centrifugation | [19] |
Spinach leaves | Ethanol | 20 min | Filtration | [41] |
Spirulina sp. (cyanobacteria) | 90% methanol | 1 h | Centrifugation | [22] |
Spirulina | Methanol and water (incubated for 2 min in a water bath at 70 °C) | 2 min (70 °C, incubated) | Centrifugation | [51] |
Spirulina | Ethanol | 1 h (sonicated) | Filtration | [40] |
Pandan leaves (P. amaryllifolius) | 96% Ethanol | 1 week | Filtration | [48] |
Parsley leaves | 96 Ethanol | 7 days | Filtration | [30] |
Pumpkin (Cucurbita maxima) leaves | Ethanol | 36 h | Filtration | [28] |
Dye/Pigment | DSSC Configuration | JSC (mA cm−2) | VOC (V) | FF | η (%) | Ref. |
---|---|---|---|---|---|---|
Spinach extract | Spinach dye-sensitized TiO2/FTO electrode, Pt/FTO counter electrode | 0.33 | 0.639 | 0.337 | 0.0713 | [29] |
Spinach extract | Chlorophyll-a-sensitized TiO2 nanorods and DSSC devices as described in [63] | 0.2566 | 0.5327 | 0.5621 | [41] | |
C. woodsonii extract | C. woodsonii-sensitized TiO2/FTO electrode and Pt/FTO counter electrode | 2.25 | 0.57 | 0.51 | 0.65 | [49] |
P. amaryllifolius extract | Chl-TiO2/conductive glass electrode, I−/I3− electrolyte solution in acetonitrile. | 0.4 | 0.55 | 0.6051 | 0.1 | [48] |
Chl-e6 in ethanol | Chl-e6–TiO2 electrode, Pt-coated OTE electrode | 1.47 | 0.425 | 0.57 | 0.4 | [64] |
Plectranthus amboinicus extract | Dye-sensitized TiO2/FTO electrode, Pt counter electrode, I3−/I− redox couple. | 0.99 | 0.637 | 0.63 | 0.46 | [38] |
Coriandrum sativum extract | 0.62 | 0.626 | 0.615 | 0.28 | ||
Murraya koenigii extract | 0.63 | 0.621 | 0.595 | 0.27 | ||
H2Chl and ZnChl | Chl-based biosolar cell (ZnChl)n/TiO2–H2Chl/TiO2/FTO electrode | 4.49 | 0.67 | 0.44 | 1.33 | [57] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fuziki, M.E.K.; Tusset, A.M.; dos Santos, O.A.A.; Lenzi, G.G. Chlorophyll Sensitization of TiO2: A Mini-Review. Reactions 2023, 4, 766-778. https://doi.org/10.3390/reactions4040044
Fuziki MEK, Tusset AM, dos Santos OAA, Lenzi GG. Chlorophyll Sensitization of TiO2: A Mini-Review. Reactions. 2023; 4(4):766-778. https://doi.org/10.3390/reactions4040044
Chicago/Turabian StyleFuziki, Maria E. K., Angelo M. Tusset, Onélia A. A. dos Santos, and Giane G. Lenzi. 2023. "Chlorophyll Sensitization of TiO2: A Mini-Review" Reactions 4, no. 4: 766-778. https://doi.org/10.3390/reactions4040044
APA StyleFuziki, M. E. K., Tusset, A. M., dos Santos, O. A. A., & Lenzi, G. G. (2023). Chlorophyll Sensitization of TiO2: A Mini-Review. Reactions, 4(4), 766-778. https://doi.org/10.3390/reactions4040044