Continuous Flow Optimisation of the Pudovik Reaction and Phospha-Brook Rearrangement Using DBN
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Experimental
2.2. General Procedure for the Synthesis of α-Hydroxyphosphonates 2
2.3. General Procedure for the Synthesis of Phosphates 3 from α-Hydroxyphosphonates 2
2.4. General Procedure for the Synthesis of Phosphates 3 from Aromatic Aldehydes and Phosphites
3. Results and Discussion
3.1. Pudovik Reaction
3.2. Phospha-Brook Rearrangement
3.3. One-Pot Pudovik–Phospha-Brook Rearrangement
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bogdan, A.R.; Dombrowski, A.W. Emerging Trends in Flow Chemistry and Applications to the Pharmaceutical Industry. J. Med. Chem. 2019, 62, 6422–6468. [Google Scholar] [CrossRef] [PubMed]
- Baumann, M.; Moody, T.S.; Smyth, M.; Wharry, S. A Perspective on Continuous Flow Chemistry in the Pharmaceutical Industry. Org. Process Res. Dev. 2020, 24, 1802–1813. [Google Scholar] [CrossRef]
- Brucoli, J.; Puglisi, A.; Rossi, S.; Gariboldi, D.; Brenna, D.; Maule, I.; Benaglia, M. A Three-Minute Gram-Scale Synthesis of Amines via Ultrafast “On-Water” in Continuo Organolithium Addition to Imines. Cell Rep. Phys. Sci. 2024, 5, 101838. [Google Scholar] [CrossRef]
- Jolley, K.E.; Chapman, M.R.; John Blacker, A. A General and Atom-Efficient Continuous-Flow Approach to Prepare Amines, Amides and Imines via Reactive N-Chloramines. Beilstein J. Org. Chem. 2018, 14, 2220–2228. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.; Yang, Q.; Yang, S.-D. Applications of Transition Metal Catalyzed P-Radical for Synthesis of Organophosphorus Compounds. Pure Appl. Chem. 2018, 91, 87–94. [Google Scholar] [CrossRef]
- Szymańska, A.; Szymczak, M.; Boryski, J.; Stawiński, J.; Kraszewski, A.; Collu, G.; Sanna, G.; Giliberti, G.; Loddo, R.; La Colla, P. Aryl Nucleoside H-Phosphonates. Part 15: Synthesis, Properties And, Anti-HIV Activity of Aryl Nucleoside 5′-α-Hydroxyphosphonates. Bioorg. Med. Chem. 2006, 14, 1924–1934. [Google Scholar] [CrossRef]
- Kategaonkar, A.H.; Pokalwar, R.U.; Sonar, S.S.; Gawali, V.U.; Shingate, B.B.; Shingare, M.S. Synthesis, in Vitro Antibacterial and Antifungal Evaluations of New α-Hydroxyphosphonate and New α-Acetoxyphosphonate Derivatives of Tetrazolo [1, 5-a] Quinoline. Eur. J. Med. Chem. 2010, 45, 1128–1132. [Google Scholar] [CrossRef]
- Wu, L.; Yuan, X.; Yang, G.; Xu, C.; Pan, Z.; Shi, L.; Wang, C.; Fan, L. An Eco-Friendly Procedure for the Synthesis of New Phosphates Using KF/Al2O3 under Solventless Conditions and Their Antifungal Properties. J. Saudi Chem. Soc. 2021, 25, 101273. [Google Scholar] [CrossRef]
- Costa, L.G. Organophosphorus Compounds at 80: Some Old and New Issues. Toxicol. Sci. 2017, 162, 24–35. [Google Scholar] [CrossRef]
- Kumar, S.; Kaushik, G.; Dar, M.A.; Nimesh, S.; López-Chuken, U.J.; Villarreal-Chiu, J.F. Microbial Degradation of Organophosphate Pesticides: A Review. Pedosphere 2018, 28, 190–208. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, Q.; Yan, X.; Wang, Y.; Liao, C.; Jiang, G. A Review of Organophosphate Flame Retardants and Plasticizers in the Environment: Analysis, Occurrence and Risk Assessment. Sci. Total Environ. 2020, 731, 139071. [Google Scholar] [CrossRef] [PubMed]
- Westheimer, F. Why Nature Chose Phosphates. Science 1987, 235, 1173–1178. [Google Scholar] [CrossRef] [PubMed]
- Oeser, P.; Tobrman, T. Organophosphates as Versatile Substrates in Organic Synthesis. Molecules 2024, 29, 1593. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, W.; Henglein, A.; Schrader, G. The New Insecticide O,O-Dimethyl 2,2,2-Trichloro-1-Hydroxyethylphosphonate. J. Am. Chem. Soc. 1955, 77, 2554–2556. [Google Scholar] [CrossRef]
- Long, N.; Cai, X.-J.; Song, B.-A.; Yang, S.; Chen, Z.; Bhadury, P.S.; Hu, D.-Y.; Jin, L.-H.; Xue, W. Synthesis and Antiviral Activities of Cyanoacrylate Derivatives Containing an α-Aminophosphonate Moiety. J. Agric. Food Chem. 2008, 56, 5242–5246. [Google Scholar] [CrossRef]
- Huang, X.-C.; Wang, M.; Pan, Y.-M.; Tian, X.-Y.; Wang, H.-S.; Zhang, Y. Synthesis and Antitumor Activities of Novel α-Aminophosphonates Dehydroabietic Acid Derivatives. Bioorg. Med. Chem. Lett. 2013, 23, 5283–5289. [Google Scholar] [CrossRef]
- Kumaraswamy, S.; Senthamizh Selvi, R.; Kumara Swamy, K.C. Synthesis of New α-Hydroxy-, α-Halogeno- and Vinylphosphonates Derived from 5,5-Dimethyl-1,3,2-Dioxaphosphinan-2-One. Synthesis 1997, 1997, 207–212. [Google Scholar] [CrossRef]
- Hayashi, M.; Nakamura, S. Catalytic Enantioselective Protonation of α-Oxygenated Ester Enolates Prepared through Phospha-Brook Rearrangement. Angew. Chem. Int. Ed. 2011, 50, 2249–2252. [Google Scholar] [CrossRef]
- Pallikonda, G.; Santosh, R.; Ghosal, S.; Chakravarty, M. BuLi-Triggered Phospha-Brook Rearrangement: Efficient Synthesis of Organophosphates from Ketones and Aldehydes. Tetrahedron Lett. 2015, 24, 3796–3798. [Google Scholar] [CrossRef]
- Ranga, S.; Chakravarty, M.; Chatterjee, T.; Ghosal, S. Mechanistic Insights into N-BuLi Mediated Phospha-Brook Rearrangement. New J. Chem. 2019, 43, 9886–9890. [Google Scholar] [CrossRef]
- Ramanjaneyulu, B.T.; Vidyacharan, S.; Yim, S.J.; Kim, D.-P. Fast-Synthesis of α-Phosphonyloxy Ketones as Drug Scaffolds in a Capillary Microreactor. Eur. J. Org. Chem. 2019, 2019, 7730–7734. [Google Scholar] [CrossRef]
- Mahandru-Gill, M.; Iqbal, A.; Damai, M.; Spiedo, F.; Kasonde, E.K.; Sykes, D.; Devine, K.G.; Patel, B. Room Temperature DBN Initiated Phospha-Brook Rearrangement of α-Hydroxyphosphonates to Phosphates. Eur. J. Org. Chem. 2022, 2022, e202201101. [Google Scholar] [CrossRef]
- Rádai, Z.; Keglevich, G. Synthesis and Reactions of α-Hydroxyphosphonates. Molecules 2018, 23, 1493. [Google Scholar] [CrossRef]
- Kabachnik, M.M.; Minaeva, L.I.; Beletskaya, I.P. Catalytic Synthesis of α-Hydroxyphosphonates. Russ. J. Org. Chem. 2009, 45, 1119–1122. [Google Scholar] [CrossRef]
- Gancarz, R.; Gancarz, I.; Walkowiak, U. On The Reversibility of Hydroxyphosphonate Formation In The Kabachnik-Fields Reaction. Phosphorus Sulfur Silicon Relat. Elem. 1995, 104, 45–52. [Google Scholar] [CrossRef]
- Gancarz, R. Nucleophilic Addition to Carbonyl Compounds. Competition between Hard (Amine) and Soft (Phosphite) Nucleophile. Tetrahedron 1995, 51, 10627–10632. [Google Scholar] [CrossRef]
- Kachkovskyi, G.O.; Kolodiazhnyi, O.I. Synthesis of the Phosphonoanalogue of Benzo[C]Pyroglutamic Acid. Phosphorus Sulfur Silicon Relat. Elem. 2010, 185, 2441–2448. [Google Scholar] [CrossRef]
- Kiss, N.Z.; Rádai, Z.; Szabó, R.; Aichi, Y.; Laasri, L.; Sebti, S. Synthesis of Organophosphates Starting from α-Hydroxyphosphonates. Phosphorus Sulfur Silicon Relat. Elem. 2018, 194, 370–371. [Google Scholar] [CrossRef]
- McLaughlin, M. Suzuki−Miyaura Cross-Coupling of Benzylic Phosphates with Arylboronic Acids. Org. Lett. 2005, 7, 4875–4878. [Google Scholar] [CrossRef]
- Khan, S.; Battula, s.; Ahmed, Q.N. Aroyl Group Driven [1,2] Phosphonate-Phosphate/Phosphine Oxide-Phosphinate Rearrangement. Tetrahedron 2016, 72, 4273–4279. [Google Scholar] [CrossRef]
- Rádai, Z. α-Hydroxyphosphonates as Versatile Starting Materials. Phosphorus Sulfur Silicon Relat. Elem. 2019, 194, 425–437. [Google Scholar] [CrossRef]
- dos Santos, A.; El Kaim, L.; Gaultier, L.; Grimaud, L. Formation of New Phosphates from Aldehydes by a DBU-Catalysed Phospha-Brook Rearrangement in a Polar Solvent. Synlett 2005, 2005, 2335–2336. [Google Scholar] [CrossRef]
- Qian, Y.; Dai, Q.; Li, Z.; Liu, Y.; Zhang, J. O-Phosphination of Aldehydes/Ketones toward Phosphoric Esters: Experimental and Mechanistic Studies. Org. Lett. 2020, 22, 4742–4748. [Google Scholar] [CrossRef] [PubMed]
- Galeta, J.; Potáček, M. Applications of Caged-Designed Proton Sponges in Base-Catalyzed Transformations. J. Mol. Catal. A Chem. 2014, 395, 87–92. [Google Scholar] [CrossRef]
- Yang, J.; Qian, D.-W.; Yang, S.-D. Lewis Acid-Catalyzed Pudovik Reaction–Phospha-Brook Rearrangement Sequence to Access Phosphoric Esters. Beilstein J. Org. Chem. 2022, 18, 1188–1194. [Google Scholar] [CrossRef]
- Pandi, M.; Chanani, P.K.; Govindasamy, S. An efficient synthesis of α-hydroxy phosphonates and 2-nitroalkanols using Ba(OH)2 as catalyst. Appl. Catal. A 2012, 441–442, 119–123. [Google Scholar]
Entry a | DBN (mol%) | Stirring Rate (rpm) | Temperature (°C) | tres (min) | 1b | NMR Yield b (%) 2b | 3b |
---|---|---|---|---|---|---|---|
1 | 5 | 500 | 40 | 20 | 22 | 44 | 34 |
2 | 5 | 500 | 40 | 120 | 4 | 48 | 48 |
3 | 5 | 500 | 60 | 20 | 12 | 51 | 37 |
4 | 5 | 500 | 25 | 20 | 32 | 63 | 5 |
5 | 5 | 500 | 25 | 60 | 29 | 65 | 6 |
6 | 5 | 500 | 25 | 90 | 15 | 78 | 7 |
7 | 5 | 500 | 25 | 120 | 5 | 88 | 7 |
8 | 5 | 500 | 25 | 180 | 10 | 79 | 11 |
9 | 5 | 250 | 25 | 120 | 16 | 75 | 9 |
10 | 5 | 1000 | 25 | 120 | 13 | 74 | 13 |
11 | 2.5 | 500 | 25 | 120 | 34 | 60 | 6 |
12 | 1 | 500 | 25 | 120 | 46 | 52 | 2 |
Entry a | Stirring Rate (rpm) | Temperature (°C) | tres (min) | NMR Yield b (%) |
---|---|---|---|---|
1 | 500 | 25 | 30 | 20 |
2 | 500 | 25 | 60 | 50 |
3 | 500 | 25 | 120 | 94 |
4 | 500 | 25 | 150 | 92 |
5 | 250 | 25 | 120 | 29 |
6 | 1000 | 25 | 120 | 63 |
7 | 1500 | 25 | 120 | 37 |
8 | 500 | 40 | 120 | 90 |
9 | 500 | 50 | 120 | 83 |
10 | 500 | 60 | 120 | 84 |
11 c | 500 | 25 | 120 | 87 |
Entry a | DBN (equiv) | Stirring Rate (rpm) | Temperature (°C) | tres (min) | NMR Yield b (%) |
---|---|---|---|---|---|
1 | 0.1 | 500 | 40 | 120 | 47 |
2 | 0.1 | 500 | 40 | 180 | 79 |
3 | 0.2 | 500 | 40 | 180 | 80 |
4 | 0.5 | 500 | 40 | 180 | 82 |
5 | 1 | 500 | 40 | 180 | 85 |
6 | 1 | 500 | 40 | 120 | 90 |
7 | 1 | 500 | 25 | 120 | 90 |
8 | 1 | 500 | 25 | 60 | 71 |
9 | 1 | 1000 | 25 | 120 | 88 |
10 | 1 | 250 | 25 | 120 | 83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dean, J.; Buckler Reinoso, N.; Spiedo, F.; Romero Fernández, C.; Patel, B. Continuous Flow Optimisation of the Pudovik Reaction and Phospha-Brook Rearrangement Using DBN. Reactions 2024, 5, 812-822. https://doi.org/10.3390/reactions5040042
Dean J, Buckler Reinoso N, Spiedo F, Romero Fernández C, Patel B. Continuous Flow Optimisation of the Pudovik Reaction and Phospha-Brook Rearrangement Using DBN. Reactions. 2024; 5(4):812-822. https://doi.org/10.3390/reactions5040042
Chicago/Turabian StyleDean, Joseph, Natalia Buckler Reinoso, Francesco Spiedo, Carola Romero Fernández, and Bhaven Patel. 2024. "Continuous Flow Optimisation of the Pudovik Reaction and Phospha-Brook Rearrangement Using DBN" Reactions 5, no. 4: 812-822. https://doi.org/10.3390/reactions5040042
APA StyleDean, J., Buckler Reinoso, N., Spiedo, F., Romero Fernández, C., & Patel, B. (2024). Continuous Flow Optimisation of the Pudovik Reaction and Phospha-Brook Rearrangement Using DBN. Reactions, 5(4), 812-822. https://doi.org/10.3390/reactions5040042