A Facile Synthesis of Some Bioactive Isoxazoline Dicarboxylic Acids via Microwave-Assisted 1,3-Dipolar Cycloaddition Reaction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Instruments
2.2. Synthesis of Dimethyl-2-Methylene Glutarate (10) [26]
2.3. General Procedure for the MW-Assisted 1,3-Cycloaddition Reaction
2.4. General Synthesis of 2,5-Disubstituted Isoxazoline Dicarboxylic Acids
2.5. Biological Activity of Compounds (12a–12d of Supplementary Materials) Against E. coli
3. Results and Discussion
3.1. Chemistry
3.2. Bioassay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ang, J.Y.; Ezike; Asmar, B.I. Antibacterial resistance. Indian J. Pediatr. 2004, 71, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Reygaert, W.C. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 2018, 4, 482–501. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gunasekera, S.P.; Cross, S.S. Fistularin 3 and 11-ketofistularin 3. Feline leukemia virus active bromotyrosine metabolites from the marine sponge Aplysina archeri. J. Nat. Prod. 1992, 55, 509–512. [Google Scholar] [CrossRef]
- Gahlot, U.S.; Rao, S.S.; Jhala, Y.S.; Dulawat, S.S.; Verma, B.L. Microwave assisted synthesis and antibacterial activity of some new 3,5-diaryl-2-isoxazolines. Indian J. Heterocycl. 2003, 13, 111–114. [Google Scholar]
- Sadashiva, M.P.; Mantelingu, K.; Swamy, S.N.; Rangappa, K.S. Solution-phase synthesis of novel Δ2-isoxazoline libraries via 1, 3-dipolar cycloaddition and their antifungal properties. Bioorg. Med. Chem. 2003, 11, 4539–4544. [Google Scholar]
- Huang, S.; Ma, H.; Wang, Z.; Zhang, P.; Li, S.; Li, Y.; Liu, A.; Li, Y.; Liu, Y.; Wang, Q. Design, synthesis, and insecticidal and fungicidal activities of ether/oxime-ether containing isoxazoline derivatives. Indian J. Heterocycl. 2023, 71, 5107–5116. [Google Scholar] [CrossRef]
- Gao, Y.C.; Song, X.; Jia, T.; Zhao, C.; Yao, G.; Xu, H. Discovery of new N-Phenylamide Isoxazoline derivatives with high insecticidal activity and reduced honeybee toxicity. Pestic. Biochem. Physiol. 2024, 200, 105843. [Google Scholar] [CrossRef]
- Kaur, K.; Kumar, V.; Sharma, A.K.; Gupta, G.K. Isoxazoline containing natural products as anticancer agents: A review. Eur. J. Med. Chem. 2014, 77, 121–133. [Google Scholar] [CrossRef]
- Ahmad, A.; Ahmad, A.; Varshney, H.; Rauf, A.; Rehan, M.; Subbarao, N.; Khan, A.U. Designing and synthesis of novel antimicrobial heterocyclic analogs of fatty acids. Eur. J. Med. Chem. 2013, 70, 887–900. [Google Scholar] [CrossRef]
- Tangallapally, R.P.; Sun, D.; Budha, N.; Lee, R.E.; Lenaerts, A.J.; Meibohm, B.; Lee, R.E. Discovery of novel isoxazolines as anti-tuberculosis agents. Bioorg. Med. Chem. Lett. 2007, 17, 6638–6642. [Google Scholar] [CrossRef]
- Aarjane, M.; Slassi, S.; Ghaleb, A.; Tazi, B.; Amine, A. Synthesis, biological evaluation, molecular docking and in silico ADMET screening studies of novel isoxazoline derivatives from acridone. Arab. J. Chem. 2021, 14, 103057. [Google Scholar] [CrossRef]
- Chakraborty, B.; Chettri, M.S.; Luitel, G.P.J. Synthesis of some novel class of bis (isoxazoline) and bis (aziridine) derivatives. Heterocycl. Chem. 2017, 54, 1611–1618. [Google Scholar] [CrossRef]
- Al-Bogami, A.S.; Alkhathlan, H.Z.; Saleh, T.S.; Al-Bogami, A.S.; Alkhathlan, H.Z.; Saleh, T.S. Microwave enhanced green synthesis of 2-pyrazolines, isoxazolines and cyclohexenones. Asian J. Chem. 2013, 25, 6427–6433. [Google Scholar] [CrossRef]
- Stassi, B.; Bougrin, K.; Soufiaoui, M. Addition dipolaire-1,3 des arylnitriloxydes avec quelques dipolarophiles olefiniques sur alumine en milieu sec et sous micro-ondes. Tetrahedron Lett. 1997, 38, 8855–8858. [Google Scholar]
- Tong, M.; Zhang, Y.; Qin, C.; Cong, F.; Yiwei, L.; Yonghai, L.; Hao, W.W. Alkenylazaarenes as dipolarophiles in 1,3-dipolar cycloaddition of nitrones: Regioselectivity-switchable and highly diastereoselective synthesis of multisubstituted isoxazolidines. Org. Chem. Front. 2018, 5, 2945–2949. [Google Scholar] [CrossRef]
- Nüchter, M.; Ondruschka, B.; Bonrath, W.; Gum, A. Microwave-assisted synthesis—A critical technology overview. Green Chem. 2004, 6, 128–141. [Google Scholar] [CrossRef]
- Leadbeater, N.E.; Marco, M. Ligand-free palladium catalysis of the Suzuki reaction in water using microwave heating. Org. Lett. 2002, 4, 2973–2976. [Google Scholar] [CrossRef]
- Safaei-Ghomi, J.; Masoomi, R. Microwave-assisted synthesis of fulleropyrazolines/fulleroisoxazolines mediated by (diacetoxyiodo) benzene: A rapid and green procedure. RSC Adv. 2014, 4, 2954–2960. [Google Scholar] [CrossRef]
- Bhardwaj, S.; Bendi, A.; Singh, L. A Study on Synthesis of Chalcone Derived-5-Membered Isoxazoline and Isoxazole Scaffolds. Curr. Org. Synth. 2022, 19, 643–663. [Google Scholar] [CrossRef]
- Zhao, Z.N.; He, F.K.; Wang, Y.H.; Li, Y.C.; Li, Z.H.; Yang, X.Y.; Schneider, U.; Huang, Y.Y. Asymmetric Clicking of Alkynyl Dipolarophiles and Nitrones Catalyzed by a Well-Defined Chiral Iron Complex. ACS Catal. 2024, 14, 13291–13302. [Google Scholar] [CrossRef]
- Corbisiero, D.; Fantoni, T.; Ferrazzano, L.; Martelli, G.; Cantelmi, P.; Mattellone, A.; Palladino, C.; Monari, M.; Pedrazzani, R.; Tolomelli, A.; et al. Fast MacMillan’s Imidazolidinone-Catalyzed Enantioselective Synthesis of Polyfunctionalized 4-Isoxazoline Scaffolds. ACS Omega 2022, 7, 26919–26927. [Google Scholar] [CrossRef] [PubMed]
- Chalyk, B.A.; Khutorianskyi, A.V.; Vashchenko, B.V.; Danyleiko, K.; Grynyova, A.; Osipova, A.O.; Kozytskiy, A.; Syniuchenko, D.; Tsymbaliuk, A.; Gavrilenko, K.S.; et al. Reductive Recyclization of sp3-Enriched Functionalized Isoxazolines into α-Hydroxy Lactams. J. Org. Chem. 2022, 87, 1001–1018. [Google Scholar] [CrossRef] [PubMed]
- Rane, D.; Sibi, M. Recent advances in nitrile oxide cycloadditions. Synthesis of isoxazolines. Curr. Org. Synth. 2011, 8, 616–627. [Google Scholar] [CrossRef]
- Kallitsakis, M.G.; Carotti, A.; Catto, M.; Peperidou, A.; Hadjipavlou-Litina, D.J.; Litinas, K.E. Synthesis and biological evaluation of novel hybrid molecules containing purine, coumarin and isoxazoline or isoxazole moieties. Open Med. Chem. J. 2017, 11, 196–211. [Google Scholar] [CrossRef]
- Krompiec, S.; Lodowski, P.; Kurpanik-Wójcik, A.; Gołek, B.; Mieszczanin, A.; Fijołek, A.; Matussek, M.; Kaszuba, K. Nitrile Oxide, Alkenes, Dipolar Cycloaddition, Isomerization and Metathesis Involved in the Syntheses of 2-Isoxazolines. Molecules 2023, 28, 2547. [Google Scholar] [CrossRef]
- Ayed, T.B.; El Gaied, M.M.; Amri, H. Stereoselective Synthesis of Some Dialkyl (E)-2-Bromomethylene Glutarates. Synth. Commun. 1995, 25, 2981–2987. [Google Scholar] [CrossRef]
- Urquilla, A.; Merrer, D.C.; Sumner, R.; Denton, R.W. Synthesis and Biological Activity of 2-(2-Amino-2-phenylethyl)-5-oxotetrahydrofuran-2-carboxylic Acid: A Microwave-Assisted 1, 3-Dipolar Cycloaddition Approach. Synlett 2021, 32, 1735–1740. [Google Scholar]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–78. [Google Scholar] [CrossRef]
- Das, B.; Holla, H.; Mahender, G.; Banerjee, J.; Reddy, M.R. Hypervalent iodine-mediated interaction of aldoximes with activated alkenes including Baylis–Hillman adducts: A new and efficient method for the preparation of nitrile oxides from aldoximes. Tetrahedron Lett. 2004, 45, 7347–7350. [Google Scholar] [CrossRef]
- Juárez, L.A.; Costero, A.M.; Parra, M.; Gil, S.; Ródenas, J.; Sancenon, F.; Martínez-Máñez, R. Biphenyl derivatives containing trimethylsilyl benzyl ether or oxime groups as probes for NO2 detection. RSC Adv. 2016, 6, 43719–43723. [Google Scholar] [CrossRef]
Compound | Concentration/(μM) | % Inhibition of E. coli |
---|---|---|
12a | 97.7 | 30.7 |
12b | 32.9 | 40.7 |
12c | 47.1 | 80.4 |
12d | 15.1 | 87.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Master, J.; Sydney, S.; Rajapaske, H.; Saffiddine, M.; Reyes, V.; Denton, R.W. A Facile Synthesis of Some Bioactive Isoxazoline Dicarboxylic Acids via Microwave-Assisted 1,3-Dipolar Cycloaddition Reaction. Reactions 2024, 5, 1080-1088. https://doi.org/10.3390/reactions5040057
Master J, Sydney S, Rajapaske H, Saffiddine M, Reyes V, Denton RW. A Facile Synthesis of Some Bioactive Isoxazoline Dicarboxylic Acids via Microwave-Assisted 1,3-Dipolar Cycloaddition Reaction. Reactions. 2024; 5(4):1080-1088. https://doi.org/10.3390/reactions5040057
Chicago/Turabian StyleMaster, Jessica, Shekiel Sydney, Harsha Rajapaske, Malek Saffiddine, Vikiana Reyes, and Richard W. Denton. 2024. "A Facile Synthesis of Some Bioactive Isoxazoline Dicarboxylic Acids via Microwave-Assisted 1,3-Dipolar Cycloaddition Reaction" Reactions 5, no. 4: 1080-1088. https://doi.org/10.3390/reactions5040057
APA StyleMaster, J., Sydney, S., Rajapaske, H., Saffiddine, M., Reyes, V., & Denton, R. W. (2024). A Facile Synthesis of Some Bioactive Isoxazoline Dicarboxylic Acids via Microwave-Assisted 1,3-Dipolar Cycloaddition Reaction. Reactions, 5(4), 1080-1088. https://doi.org/10.3390/reactions5040057