Advancements in Carbohydrate Scaffold Synthesis: Exploring Prins Cyclization Methodology
Abstract
:1. Introduction
2. Carbohydrate Synthons to Carbohydrate Scaffolds
3. Non-Carbohydrate Synthons to Carbohydrate Scaffolds
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Varki, A. Biological roles of oligosaccharides: All of the theories are correct. Glycobiology 1993, 3, 97. [Google Scholar] [CrossRef]
- Seeberger, P.H.; Werz, D.B. Synthesis and medical applications of oligosaccharides. Nature 2007, 446, 1046–1051. [Google Scholar] [CrossRef]
- Dwek, R.A. Glycobiology: Toward Understanding the Function of Sugars. Chem. Rev. 1996, 96, 683–720. [Google Scholar] [CrossRef] [PubMed]
- Rudd, P.M.; Elliott, T.; Cresswell, P.; Wilson, I.A.; Dwek, R.A. Glycosylation and the Immune System. Science 2001, 291, 2370–2376. [Google Scholar] [CrossRef] [PubMed]
- Galonic, D.P.; Gin, Y.D. Chemical glycosylation in the synthesis of glycoconjugate antitumour vaccines. Nature 2007, 446, 1000–1007. [Google Scholar] [CrossRef]
- Ernst, B.; Magnani, J.L. From carbohydrate leads to glycomimetic drugs. Nat. Rev. 2009, 8, 661–677. [Google Scholar] [CrossRef] [PubMed]
- Gloster, T.M.; Vocadlo, D.J. Developing inhibitors of glycan processing enzymes as tools for enabling glycobiology. Nat. Chem. Biol. 2012, 8, 683–694. [Google Scholar] [CrossRef] [PubMed]
- Boltje, T.J.; Buskas, T.; Boons, G.-J. Opportunities and challenges in synthetic oligosaccharide and glycoconjugate research. Nat. Chem. 2009, 1, 611–622. [Google Scholar] [CrossRef]
- Pratt, M.R.; Bertozzi, C.R. Synthetic glycopeptides and glycoproteins as tools for biology. Chem. Soc. Rev. 2005, 34, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Pang, P.-C.; Chiu, P.C.N.; Lee, C.-L.; Chang, L.-Y.; Panico, M.; Morris, H.R.; Haslam, S.M.; Khoo, K.-H.; Clark, G.F.; Yeung, W.S.B.; et al. Human sperm binding is mediated by the sialyl-Lewis(x) oligosaccharide on the zona pellucida. Science 2011, 333, 1761–1764. [Google Scholar] [CrossRef] [PubMed]
- Davis, B.G. Synthesis of Glycoprotein. Chem. Rev. 2002, 102, 579–602. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Hu, M.; Wang, D.; Wang, G.; Zhu, X.; Yan, D.; Sun, J. Multifunctional Hyperbranched Glycoconjugated Polymers Based on Natural Aminoglycosides. Bioconjug. Chem. 2012, 23, 1189–1199. [Google Scholar] [CrossRef]
- Schjoldager, K.T.; Narimatsu, Y.; Joshi, H.J.; Clausen, H. Global view of human protein glycosylation pathways and functions. Nat. Rev. Mol. Cell Biol. 2020, 21, 729–749. [Google Scholar] [CrossRef] [PubMed]
- Reily, C.; Stewart, T.J.; Renfrow, M.B.; Novak, J. Glycosylation in health and disease. Nat. Rev. Nephrol. 2019, 15, 346–366. [Google Scholar] [CrossRef]
- Spiro, R.G. Protein glycosylation: Nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology 2002, 12, 43R–56R. [Google Scholar] [CrossRef]
- Ande, C.; Dubbu, S.; Verma, A.K.; Vankar, Y.D. Recent developments in the synthesis of prosophylline and its derivatives. Tetrahedron Lett. 2018, 59, 1879–1895. [Google Scholar] [CrossRef]
- Eichler, J. Protein glycosylation. Curr. Biol. 2019, 29, R229–R231. [Google Scholar] [CrossRef]
- Bieberich, E. Synthesis, Processing, and Function of N-glycans in N-glycoproteins. Adv. Neurobiol. 2014, 9, 47–70. [Google Scholar] [PubMed]
- Greco, S.J.; Fiorot, R.G.; Larceda, V., Jr.; dos Santos, R.B. Recent Advances in the Prins Cyclization. Aldrichim. Acta 2013, 46, 59–67. [Google Scholar]
- Pastor, I.M.; Yus, M. Focused Update on the Prins Reaction and the Prins Cyclization. Curr. Org. Chem. 2012, 16, 1277–1312. [Google Scholar] [CrossRef]
- Olier, C.; Kaafarani, M.; Gastaldi, S.; Bertrand, M.P. Synthesis of tetrahydropyrans and related heterocycles via prins cyclization; extension to aza-prins cyclization. Tetrahedron 2010, 66, 413–445. [Google Scholar] [CrossRef]
- Pastor, I.M.; Yus, M. The Prins Reaction: Advances and Applications. Curr. Org. Chem. 2007, 11, 925–957. [Google Scholar] [CrossRef]
- Snider, B.B. The Prins and Carbonyl Ene Reactions; Trost, B.M., Fleming, I., Heathcock, C.H., Eds.; Pergamon Press: New York, NY, USA, 1991; Volume 2, pp. 527–561. [Google Scholar]
- Donnelly, B.L.; Elliott, L.D.; Willis, C.L.; Booker-Milburn, K.I. Sequential Photochemical and Prins Reactions for the Diastereoselective Synthesis of Tricyclic Scaffolds. Angew. Chem. 2019, 131, 9193–9196. [Google Scholar] [CrossRef]
- Crosby, S.R.; Harding, J.R.; King, C.D.; Parker, G.D.; Willis, C.L. Oxonia-Cope Rearrangement and Side-Chain Exchange in the Prins Cyclization. Org. Lett. 2002, 4, 577–580. [Google Scholar] [CrossRef] [PubMed]
- Dobbs, A.P.; Guesné, S.J.J.; Parker, R.J.; Skidmore, J.; Stephenson, R.A.; Hursthouse, M.B. A detailed investigation of the aza-Prins reaction. Org. Biomol. Chem. 2010, 8, 1064–1080. [Google Scholar] [CrossRef]
- González-Andrés, P.; Diez-Poza, C.; Peña, L.F.; Gónzalez-Pinardo, D.; Fernandez, I.; Barbero, A. Insight into the Key Factors that Influence the Reaction Pathways in the Silyl-Prins Cyclization of gem-Vinylsilyl Alcohols. Adv. Synth. Catal. 2024, accepted. [Google Scholar] [CrossRef]
- Peh, G.R.; Floreancig, P.E. Cyclopropane Compatibility with Oxidative Carbocation Formation: Total Synthesis of Clavosolide A. Org. Lett. 2012, 14, 5614–5617. [Google Scholar] [CrossRef] [PubMed]
- Yadav, J.S.; Purnima, K.V.; Reddy, B.V.S.; Nagaiah, K.; Ghamdi, A.K. Total synthesis of cryptophycin-24 (arenastatin A) via Prins cyclization. Tetrahedron Let. 2011, 52, 6709–6712. [Google Scholar] [CrossRef]
- Sang, K.; Woo, E.L. Polycavernoside A: The Prins Macrocyclization Approach. J. Am. Chem. Soc. 2010, 132, 4564–4565. [Google Scholar]
- Díaz-Ovied, D.; Maji, R.; List, B. The Catalytic Asymmetric Intermolecular Prins Reaction. J. Am. Chem. Soc. 2021, 143, 20598–20604. [Google Scholar] [CrossRef]
- Reyes, E.; Prieto, L.; Uria, U.; Carrillo, L.; Vicario, J.L. Recent Advances in the Prins Reaction. ACS Omega 2022, 36, 31621–31627. [Google Scholar] [CrossRef] [PubMed]
- Mijailovic, N.; Nesler, A.; Perazzolli, M.; Barka, E.A.; Aziz, A. Rare Sugars: Recent Advances and Their Potential Role in Sustainable Crop Protection. Molecules 2021, 26, 1720. [Google Scholar] [CrossRef]
- Ahmed, A.; Khan, T.A.; Ramdath, D.D.; Kendall, C.W.C.; Sievenpiper, J.L. Rare sugars and their health effects in humans. Nutr Rev. 2022, 10, 255–270. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.; Avery, A.; Ford, R.; Yang, Q.; Goux, A.; Mukherjee, I.; Neville, D.C.A.; Jethwa, P. Rare sugars: Metabolic impacts and mechanisms of action: A scoping review. Br. J. Nutr. 2021, 10, 389–406. [Google Scholar] [CrossRef] [PubMed]
- Ryan, J.B.; Thomas, W.H.; Craig, G.; Galan, M.C.; Christine, L.W. Stereoselective synthesis of protected l- and d-dideoxysugars and analogues via Prins cyclisations. Chem. Sci. 2016, 7, 2743. [Google Scholar]
- Dubbu, S.; Jampani, S.; Hevey, R. Carbohydrate-Derived Dienes as Building Blocks for Pharmaceutically Relevant Molecules. Helv. Chim. Acta 2023, 106, e202200135. [Google Scholar] [CrossRef]
- Li, G.; Noguchi, M.; Serizawa, K.; Shoda, S. Chemistry of 1,2-Anhydro Sugars. Chimia 2018, 72, 874–881. [Google Scholar] [CrossRef]
- Hazelard, D.; Compain, P. Nucleophilic Ring-Opening of 1,6-Anhydrosugars: Recent Advances and Applications in Organic Synthesis. Eur. J. Org. Chem. 2021, 2021, 3501–3515. [Google Scholar] [CrossRef]
- Lahiri, R.; Dharuman, S.; Vankar, Y.D. Functionalizationof GlycalsLeadingto2-Deoxy-O-glycosides, Aminosugars, Nitrosugars and Glycosidase Inhibitors: Our Experience. Chimia 2012, 66, 905–912. [Google Scholar] [CrossRef] [PubMed]
- Hussain, N.; Ahmed, A.; Mukherjee, D. 2-Halo Glycals as “Synthon” for 2-C-Branched Sugar: Recent Advances and Applications in Organic Synthesis. Asian J. Org. Chem. 2020, 9, 882–897. [Google Scholar] [CrossRef]
- Kinfe, H.H. Versatility of glycals in synthetic organic chemistry: Coupling reactions, diversity oriented synthesis and natural product synthesis. Org. Biomol. Chem. 2019, 17, 4153–4182. [Google Scholar] [CrossRef]
- Ghouilem, J.; de Robichon, M.; Le Bideau, F.; Ferry, A.; Messaoudi, S. Emerging Organometallic Methods for the Synthesis of C-Branched (Hetero)aryl, Alkenyl, and Alkyl Glycosides: C−H Functionalization and Dual Photoredox Approaches. Chem. Eur. J. 2021, 27, 491–511. [Google Scholar] [CrossRef] [PubMed]
- Gómez, A.M.; Lobo, F.; Uriel, C.; López, J.C. Recent Developments in the Ferrier Rearrangement. Eur. J. Org. Chem. 2013, 2013, 7221–7262. [Google Scholar] [CrossRef]
- Upadhyaya, K.; Dubbu, S. Advancing carbohydrate functionality: The role of hypervalent iodine. Carbohydr. Res. 2024, 542, 109175. [Google Scholar] [CrossRef]
- Dubbu, S. Versatile applications of 3-OxoGlycals: A review. Carbohydr. Res. 2024, 536, 109016. [Google Scholar] [CrossRef]
- Yadava, J.S.; Reddy, B.V.S.; Singh, A.P.; Dudhmal, N.C.; Deepak, C.; Kunwar, A.C. First example of carbohydrate-based Prins cyclization: A novel class of sugar-annulated tetrahydropyrans. Tetrahedron Lett. 2010, 51, 1475–1478. [Google Scholar] [CrossRef]
- Reddy, B.V.S.; Dudhmal, N.C.; Yadava, J.S.; Deepak, C.; Kunwar, A.C. BF3·OEt2-catalyzed tandem Prins Friedel–Crafts reaction: A novel synthesis of sugar fused diarylhexahydro-2H-furo[3,2-b]pyrans. Tetrahedron Lett. 2011, 52, 2961–2964. [Google Scholar] [CrossRef]
- Reddy, B.V.S.; Ganesh, A.; Siva Krishna, V.A.; Narayana Kumar, G.G.K.S.; Yadav, J.S. Sc(OTf)3-catalyzed sugar based tandem ene-Prins cyclization: A novel synthesis of hexahydro-2H-furo[3,2-b]pyranopyran scaffolds. Tetrahedron Lett. 2011, 52, 3342–3344. [Google Scholar] [CrossRef]
- Lambua, M.R.; Mukherjee, D. Diastereoselective synthesis of highly functionalized cis-1-oxadecalines via 6-endo-tet-cyclizations of 2-C-branched sugars. RSC Adv. 2014, 4, 37908. [Google Scholar] [CrossRef]
- Sixto, J.P.; Pedro Daniel, O.M.; Fernándezc, A.C.X.; Martín, V.S.; Padrón, J.I. Iron(III)-Catalyzed Prins Cyclization towards the Synthesis of trans-Fused Bicyclic Tetrahydropyrans. Synthesis 2015, 47, 1791–1798. [Google Scholar]
- Manami, C.; Yuichi, I.; Ryuichi, S.; Masato, O. Stereoselective Synthesis of anti-1,3-Aminoalcohols via Reductive Opening of 4-Amidotetrahydropyrans Derived from the Prins/Ritter Sequence. ACS Comb. Sci. 2016, 18, 399–404. [Google Scholar]
- Parasuraman, R.; Govind, P.S.; Mohammad, H.; Yashwant, D.V. A Cascade “Prins-Pinacol-Type Rearrangement and C4-OBn Participation” on Carbohydrate Substrates: Synthesis of Bridged Tricyclic Ketals, Annulated Sugars and C2-Branched Heptoses. Chem. Eur. J. 2016, 22, 18383–18387. [Google Scholar]
- Parasuraman, R.; Yakkala, M.; Yashwant, D.V. Synthesis of 1C-Aryl/Alkyl 2C-Branched Sugar-Fused Isochroman Derivatives by Sequential Prins and Friedel–Crafts Cyclizations on a Perlin Aldehyde Derived Substrate. Synlett 2017, 28, 1346–1352. [Google Scholar]
- Sateesh, D.; Yashwant, D.V. Diversity-Oriented Synthesis of Carbohydrate Scaffolds through the Prins Cyclization of Differently Protected d-Mannitol-Derived Homoallylic Alcohols. Eur. J. Org. Chem. 2017, 5986–6002. [Google Scholar]
- Sateesh, D.; Anirban, B.; Ande, C.; Yashwant, D.V. A Cascade of Prins Reaction and Pinacol-Type Rearrangement: Access to 2,3-Dideoxy-3C-Formyl β-C-Aryl/Alkyl Furanosides and 2-Deoxy-2C-Branched β-C-Aryl Furanoside. Eur. J. Org. Chem. 2018, 6800–6808. [Google Scholar]
- Sateesh, D.; Ande, C.; Ashish, K.V.; Yashwant, D.V. Stereoselective synthesis of 2-deoxy-β-C-aryl/alkyl glycosides using Prins cyclization: Application in the synthesis of C-disaccharides and differently protected C-aryl glycosides. Carbohydrate Res. 2018, 468, 64–68. [Google Scholar]
- Ande, C.; Sateesh, D.; Kadigachalam, P.; Yashwant, D.V. Stereoselective Synthesis of 1,2-Annulated Sugars Having Substituted Tetrahydropyran/(-furan) Scaffolds Using the Prins-Reaction. Eur. J. Org. Chem. 2018, 6706–6713. [Google Scholar]
- Hlokoane, O.; Itagaki, H.; Chiba, M.; Noda, T.; Takasaki, Y.; Miyako, K.; Sakai, R.; Ishikawa, Y.; Oikawa, M. Prins reaction using trioxane for trisubstituted, cis-fused hexahydro-2h-furo[3,2-b]pyran derivative. Heterocycles 2018, 96, 453–460. [Google Scholar]
- Elshahawi, S.I.; Shaaban, K.A.; Kharel, M.K.; Thorson, J.S. A comprehensive review of glycosylated bacterial natural products. Chem. Soc. Rev. 2015, 44, 7591–7697. [Google Scholar]
- Redpath, P.; Macdonald, S. A Regio- and Stereocontrolled Approach to Pyranosyl C-Nucleoside Synthesis. Org. Lett. 2008, 10, 3323–3326. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dubbu, S.; Jampani, S. Advancements in Carbohydrate Scaffold Synthesis: Exploring Prins Cyclization Methodology. Reactions 2025, 6, 3. https://doi.org/10.3390/reactions6010003
Dubbu S, Jampani S. Advancements in Carbohydrate Scaffold Synthesis: Exploring Prins Cyclization Methodology. Reactions. 2025; 6(1):3. https://doi.org/10.3390/reactions6010003
Chicago/Turabian StyleDubbu, Sateesh, and Santhi Jampani. 2025. "Advancements in Carbohydrate Scaffold Synthesis: Exploring Prins Cyclization Methodology" Reactions 6, no. 1: 3. https://doi.org/10.3390/reactions6010003
APA StyleDubbu, S., & Jampani, S. (2025). Advancements in Carbohydrate Scaffold Synthesis: Exploring Prins Cyclization Methodology. Reactions, 6(1), 3. https://doi.org/10.3390/reactions6010003