Immobilization of Trametes versicolor Laccase by Interlinked Enzyme Aggregates with Improved pH Stability and Its Application in the Degradation of Bisphenol A
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Microorganism and Production of Laccase
2.3. Determination of Laccase Activity
2.4. Laccase Immobilization
2.5. Evaluation of Immobilization Parameters
2.6. Physico-Chemical Properties
2.7. Determination of Kinetic Parameters
2.8. Bisphenol A Degradation Measurement
2.9. Statistical Analysis
3. Results and Discussion
3.1. Evaluation of the Immobilization Efficiency of T. versicolor Laccase
3.2. Activity and Stability as a Function of Temperature
3.3. Effects of pH
3.4. Kinetics
3.5. Reusability of the Immobilized Laccase in the Oxidation of ABTS
3.6. Bisphenol A Degradation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aghaee, M.; Salehipour, M.; Rezaei, S.; Mogharabi-Manzari, M. Bioremediation of organic pollutants by laccase-metal–organic framework composites: A review of current knowledge and future perspective. Bioresourc. Technol. 2024, 406, 13072. [Google Scholar] [CrossRef] [PubMed]
- Fathali, Z.; Rezaei, S.; Faramarzi, M.A.; Habibi-Rezaei, M. Catalytic phenol removal using entrapped cross-linked laccase aggregates. Int. J. Biol. Macromol. 2019, 122, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Ademakinwa, A.N. A heat-resistant intracellular laccase immobilized via cross-linked enzyme aggregate preparation: Characterization, application in bisphenol A removal and phytotoxicity evaluation. J. Hazard. Mater. 2021, 419, 126480. [Google Scholar] [CrossRef]
- Brugnari, T.; Pereira, M.G.; Bubna, G.A.; de Freitas, E.N.; Contato, A.G.; Corrêa, R.C.G.; Castoldi, R.; de Souza, C.G.M.; Polizeli, M.L.T.M.; Bracht, A.; et al. A highly reusable MANAE-agarose-immobilized Pleurotus ostreatus laccase for degradation of bisphenol A. Sci. Total Environ. 2018, 634, 1346–1351. [Google Scholar] [CrossRef] [PubMed]
- Bilal, M.; Iqbal, H.M.N. Persistence and impact of steroidal estrogens on the environment and their laccase-assisted removal. Sci. Total Environ. 2019, 690, 447–459. [Google Scholar] [CrossRef] [PubMed]
- Bilal, M.; Iqbal, H.M.; Barceló, D. Mitigation of bisphenol A using an array of laccase-based robust bio-catalytic cues: A review. Sci. Total Environ. 2019, 689, 160–177. [Google Scholar] [CrossRef]
- Bilal, M.; Jing, Z.; Zhao, Y.; Iqbal, H.M.N. Immobilization of fungal laccase on glutaraldehyde cross linked chitosan beads and its bio-catalytic potential to degrade bisphenol A. Biocatal. Agric. Biotechnol. 2019, 19, 101174. [Google Scholar] [CrossRef]
- Dong, C.D.; Tiwari, A.; Anisha, G.S.; Chen, C.W.; Singh, A.; Haldar, D.; Patel, A.K.; Sighania, R.R. Laccase: A potential biocatalyst for pollutant degradation. Environ. Pollut. 2023, 319, 120999. [Google Scholar] [CrossRef]
- Backes, E.; Kato, C.G.; Silva, T.B.V.; Uber, T.M.; Pasquarelli, D.L.; Bracht, A.; Peralta, R.M. Production of fungal laccase on pineapple waste and application in detoxification of malachite green. J. Environ. Sci. Health B 2022, 57, 90–101. [Google Scholar] [CrossRef]
- Fernández-Fernández, M.; Sanromán, M.A.; Moldes, D. Recent developments and applications of immobilized laccase. Biotechnol. Adv. 2013, 31, 1808–1824. [Google Scholar] [CrossRef]
- Maftoon, H.; Taravati, A.; Tohidi, F. Immobilization of laccase on carboxyl-functionalized chitosan-coated magnetic nanoparticles with improved stability and reusability. Monastsh. Chem. 2023, 154, 279–291. [Google Scholar] [CrossRef]
- Zdarta, J.; Meyer, A.S.; Jesionowski, T.; Pinelo, M. Multi-faceted strategy based on enzyme immobilization with reactant adsorption and membrane technology for biocatalytic removal of pollutants: A critical review. Biotechnol. Adv. 2019, 37, 107401. [Google Scholar] [CrossRef]
- Basso, A.; Serban, S. Industrial applications of immobilized enzymes—A review. Mol. Catal. 2019, 479, 110607. [Google Scholar] [CrossRef]
- Chen, Z.; Oh, W.D.; Yap, P.S. Recent advances in the utilization of immobilized laccase for the degradation of phenolic compounds in aqueous solutions: A review. Chemosphere 2022, 307, 135824. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Tang, L.-X.; Ye, Y.-F.; Ma, J.-X.; Li, X.; Si, J.; Cui, B.-K. Laccase immobilization and its degradation of emerging pollutants: A comprehensive review. J. Environ. Manag. 2024, 359, 120984. [Google Scholar] [CrossRef] [PubMed]
- Kurniawati, S.; Nicell, J.A. Characterization of Trametes versicolor laccase for the transformation of aqueous phenol. Bioresour. Technol. 2008, 99, 7825–7834. [Google Scholar] [CrossRef] [PubMed]
- Thathola, P.; Melchor-Martinez, E.M.; Adhikari, P.; Matínez, S.A.H.; Pandey, A.; Parra-Saldívar, R. Laccase-mediated degradation of emerging contaminants: Unveiling a sustainable solution. Environ. Sci. Adv. 2024, 3, 1500. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, H.; Wu, J.; Yuan, L.; Wang, Y.; Du, X.; Wang, R.; Marwa, P.W.; Petlul, P.; Cen, X.; et al. The adverse health effects of bisphenol A and related toxicity mechanisms. Environ. Res. 2019, 176, 108575. [Google Scholar] [CrossRef] [PubMed]
- Asadgol, Z.; Forootanfar, H.; Rezaei, S.; Mahvi, A.H.; Faramarzi, M.A. Removal of phenol and bisphenol-A catalyzed by laccase in aqueous solution. J. Environ. Health Sci. Eng. 2014, 12, 93. [Google Scholar] [CrossRef] [PubMed]
- Kasongo, A.A.; Leroux, M.; Amrouche-Mekkioui, I.; Belhadji-Domecq, M.; Aguer, C. BPA exposure in L6 myotubes increased basal glucose metabolism in an estrogen receptor-dependent manner but induced insulin resistance. Food Chem. Toxicol. 2022, 170, 113505. [Google Scholar] [CrossRef]
- Liang, X.; Xie, R.; He, Y.; Li, W.; Du, B.; Zeng, L. Broadening the lens on bisphenols in coastal waters: Occurrence, partitioning, and input fluxes of multiple novel bisphenol S derivatives along with BPA and BPA analogues in the Pearl River Delta, China. Environ. Pollut. 2023, 322, 121194. [Google Scholar] [CrossRef]
- Said, K.A.M.; Ismail, A.F.; Karim, Z.A.; Abdullah, M.S.; Hafeez, A. A review of technologies for the phenolic compounds recovery and phenol removal from wastewater. Proc. Saf. Environ. Protect. 2021, 151, 257–289. [Google Scholar] [CrossRef]
- Zhou, W.; Zhang, W.; Cai, Y. Laccase immobilization for water purification: A comprehensive review. Chem. Eng. J. 2021, 403, 126272. [Google Scholar] [CrossRef]
- Hong, J.; Jung, D.; Park, S.; Oh, Y.; Oh, K.K.; Lee, S.H. Immobilization of laccase via cross-linked enzyme aggregates prepared using genipin as a natural cross-linker. Int. J. Biol. Macromol. 2021, 169, 541–550. [Google Scholar] [CrossRef]
- Vogel, H. A convenient growth medium for Neurospora crassa. Microb. Gen. Bull. 1956, 13, 42–47. [Google Scholar]
- Mota, T.R.; Kato, C.G.; Peralta, R.A.; Bracht, A.; de Morais, G.R.; Baesso, M.L.; de Souza, C.G.M.; Peralta, R.M. Decolourization of Congo red by Ganoderma lucidum laccase: Evaluation of degradation products and toxicity. Water Air Soil Pollut. 2015, 226, 351. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Uber, T.M.; Buzzo, A.J.D.R.; Scaratti, G.; Amorim, S.M.; Helm, C.V.; Maciel, G.M.; Peralta, R.A.; Peralta, R.F.M.; Bracht, A.; Peralta, R.M. Comparative detoxification of Remazol Brilliant Blue R by free and immobilized laccase of Oudemansiella canarii. Biocatal. Biotransform. 2022, 40, 17–28. [Google Scholar] [CrossRef]
- Brugnari, T.; Contato, A.G.; Pereira, M.G.; Freitas, E.N.D.; Bubna, G.A.; Aranha, G.M.; Bracht, A.; Polizeli, M.L.T.M.; Peralta, R.M. Characterization of free and immobilized laccases from Ganoderma lucidum: Application on bisphenol A degradation. Biocatal. Biotransform. 2021, 39, 71–80. [Google Scholar] [CrossRef]
- Plowman, K.M. Enzyme Kinetics; McGraw-Hill, Inc.: New York, NY, USA, 1972. [Google Scholar]
- Cornish-Bowden, A. Fundamentals of Enzyme Kinetics; Wiley-VCH Verlag & Co. KgaA: Weinheim, Germany, 2012. [Google Scholar]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Automat. Control 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Primožič, M.; Kravanja, G.; Knez, Ž.; Crnjac, A.; Leitgeb, M. Immobilized laccase in the form of (magnetic) cross-linked enzyme aggregates for sustainable diclofenac (bio) degradation. J. Clean. Prod. 2020, 275, 124121. [Google Scholar] [CrossRef]
- Das, R.; Liang, Z.; Li, G.; An, T. A non-blue laccase of Bacillus sp. GZB displays manganese-oxidase activity: A study of laccase characterization, Mn (II) oxidation and prediction of Mn (II) oxidation mechanism. Chemosphere 2020, 252, 126619. [Google Scholar] [CrossRef]
- Habimana, P.; Jiang, Y.; Gao, J.; Ndayambaje, J.B.; Darwesh, O.M.; Mwizerwa, J.P.; Zheng, X.; Ma, L. Enhancing laccase stability and activity for dyes decolorization using ZIF-8@ MWCNT nanocomposite. Chin. J. Chem. Eng. 2022, 48, 66–75. [Google Scholar] [CrossRef]
- Khan, M.R. Immobilized enzymes: A comprehensive review. Bull. Natl. Res. Cent. 2021, 45, 207. [Google Scholar] [CrossRef]
- Mazlan, S.Z.; Hanifah, S.A. Effects of temperature and pH on immobilized laccase activity in conjugated methacrylate-acrylate microspheres. Int. J. Polym. Sci. 2017, 2017, 5657271. [Google Scholar] [CrossRef]
- Ameri, A.; Faramarzi, M.A.; Tarighi, S.; Shakibaie, M.; Ameri, A.; Ramezani-Sarbandi, A.; Forootanfar, H. Removal of dyes by Trametes versicolor laccase immobilized on NaY-zeolite. Chem. Eng. Res. Des. 2023, 197, 240–253. [Google Scholar] [CrossRef]
- Hürmüzlü, R.; Okur, M.; Saraçoğlu, N. Immobilization of Trametes versicolor laccase on chitosan/halloysite as a biocatalyst in the Remazol Red RR dye. Int. J. Biol. Macromol. 2021, 192, 331–341. [Google Scholar] [CrossRef] [PubMed]
- Braga, D.M.; Brugnari, T.; Haminiuk, C.W.I.; Maciel, G.M. Production and immobilization of laccases from monoculture and co-culture of Trametes villosa and Pycnoporus sanguineus for sustainable biodegradation of ciprofloxacin. Proc. Biochem. 2024, 141, 132–143. [Google Scholar] [CrossRef]
- Reda, F.M.; Hassan, N.S.; El-Moghazy, A.N. Decolorization of synthetic dyes by free and immobilized laccases from newly isolated strain Brevibacterium halotolerans N11 (KY883983). Biocatal. Agric. Biotechnol. 2018, 15, 138–145. [Google Scholar] [CrossRef]
- Latif, A.; Maqbool, A.; Zhou, R.; Arsalan, M.; Sun, K.; Si, Y. Optimized degradation of bisphenol A by immobilized laccase from Trametes versicolor using Box-Behnken design (BBD) and artificial neural network (ANN). J. Environ. Chem. Eng. 2022, 10, 107331. [Google Scholar] [CrossRef]
- Latif, A.; Maqbool, A.; Sun, K.; Si, Y. Immobilization of Trametes versicolor laccase on Cu-alginate beads for biocatalytic degradation of bisphenol A in water: Optimized immobilization, degradation and toxicity assessment. J. Environ. Chem. Eng. 2022, 10, 107089. [Google Scholar] [CrossRef]
- Zou, M.; Tian, W.; Chu, M.; Lu, Z.; Liu, B.; Xu, D. Magnetically separable laccase- biochar composite enable highly efficient adsorption-degradation of quinolone antibiotics: Immobilization, removal performance and mechanisms. Sci. Total Environ. 2023, 879, 163057. [Google Scholar] [CrossRef] [PubMed]
- Barrios-Estrada, C.; Rostro-Alanis, J.; Parra, A.L.; Belleville, M.P.; Sanchez-Marcano, J.; Iqbal, M.N.; Parra-Saldivar, R. Potentialities of active membranes with immobilized laccase for Bisphenol A degradation. Int. J. Biol. Macromol. 2018, 108, 837–844. [Google Scholar] [CrossRef]
Microorganism/Immobilization Matrix | Properties | Reference |
---|---|---|
Trametes versicolor CLEA | Highest activity between 50 and 55 °C. Immobilized laccase was more stable in the regions of 60 and 65 °C. Optimal pH in the more acidic range (2.0 and 3.0) and greater stability in the range of 4.0 to 6.0. Thermal and pH stability were improved with immobilization. | This work |
Trametes versicolor NaY Zeolite | Optimal pH at 4.0 (free) and 6.0 (immobilized). Greater stability at pH 7.0 after immobilization. Maximum activity at 30 °C (free) and 50 °C (immobilized). | [38] |
Trametes versicolor Chitosan/halloysite | Optimal pH at 6.0 (free) and 5.0 (immobilized). Immobilized laccase more stable under acidic conditions. Maximum activity at 45 °C (free) and 35 °C (immobilized). The activity of the immobilized enzyme was greater than that of the free enzyme at temperatures, different from 45 °C. | [39] |
Ganoderma lucidum MANAE-agarose | Optimal activity at pH 5.0 (both free and immobilized). Reduced enzyme sensitivity to alkaline pH after immobilization. Maximum activity at 60–65 °C. Greater stability at 40 and 55 °C after immobilization. | [29] |
Mono and co-culture Trametes villosa/Pycnoporus sanguineus CLEA | Best catalytic activity between 50 and 60 °C. Greater thermal stability after immobilization, maintaining 100% activity after 180 min, while the free form had less than 90%. The optimal pH range for laccase activity in the free form was between 2.4 and 2.6, and 2.6 and 3.6 for the immobilized form. | [40] |
Brevibacterium halotolerans N11 (KY883983) Alginate-gelatin | The optimal pH values were 5.0 (free) and 6.0 (immobilized). The immobilized laccase was stable at pH values ranging from 5 to 7 compared to the free enzyme. The optimal temperature of the immobilized laccase increased from 35 °C to 40 °C. The immobilized laccase was stable at 58 °C. | [41] |
Enzyme Form | Units | kobs (min−1) | t½ (min) | Model Selection Criterion | Correlation Coefficient |
---|---|---|---|---|---|
Free | 0.1 | 0.0217 ± 0.0005 | 31.93 ± 0.03 | 5.733 | 0.999 |
0.2 | 0.0379 ± 0.0013 | 18.28 ± 0.07 | 5.568 | 0.998 | |
0.3 | 0.0512 ± 0.0032 | 13.51 ± 0.84 | 4.934 | 0.998 | |
Immobilized | 0.2 | 0.0125 ± 0.0006 | 55.17 ± 2.70 | 3.871 | 0.995 |
0.5 | 0.0473 ± 0.0038 | 14.64 ± 1.17 | 4.303 | 0.996 |
Type of Immobilization | Main Results | Reference |
---|---|---|
Cross-linked aggregates | 72% and 94.1% of 200 µM BPA were removed after 1 h of treatment at 40 °C and pH 5.0 using 0.2 and 0.5 U of immobilized laccase, respectively. The immobilized enzyme allowed 7 reuse cycles in the oxidation of ABTS and up to 4 cycles in the degradation of BPA. | This work |
Glutaraldehyde cross-linked chitosan beads | Degradation of 20 mg/L (87.6 µM) BPA in 2 h. The immobilized enzyme retained 71.24% of its original activity after 10 repeated catalytic cycles. | [7] |
Multi-channel ceramic membrane | Degradation of 20 mg/L (87.6 µM) BPA in 24 h. The enzyme showed a degradation rate of 79.0 ± 0.1 μmol/min/U. | [45] |
Ba-alginate beads | Maximum BPA degradation of 84.34% was obtained at a temperature of 40 °C after 50 min using an initial BPA concentration of 2 mg/L (8.76 µM). | [42] |
Cu-alginate beads | 0.5 g immobilized enzyme was able to degrade 96.12% of BPA (10 mg/L, 43.8 µM) at pH 5.0, 30 °C, 150 rpm and 23 h of reaction | [43] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uber, T.M.; de Oliveira Pateis, V.; Cheute, V.M.S.; dos Santos, L.F.O.; de Figueiredo Trindade, A.R.; Contato, A.G.; dos Santos Filho, J.R.; Corrêa, R.C.G.; Castoldi, R.; de Souza, C.G.M.; et al. Immobilization of Trametes versicolor Laccase by Interlinked Enzyme Aggregates with Improved pH Stability and Its Application in the Degradation of Bisphenol A. Reactions 2025, 6, 9. https://doi.org/10.3390/reactions6010009
Uber TM, de Oliveira Pateis V, Cheute VMS, dos Santos LFO, de Figueiredo Trindade AR, Contato AG, dos Santos Filho JR, Corrêa RCG, Castoldi R, de Souza CGM, et al. Immobilization of Trametes versicolor Laccase by Interlinked Enzyme Aggregates with Improved pH Stability and Its Application in the Degradation of Bisphenol A. Reactions. 2025; 6(1):9. https://doi.org/10.3390/reactions6010009
Chicago/Turabian StyleUber, Thaís Marques, Vanesa de Oliveira Pateis, Vinícius Mateus Salvatori Cheute, Luís Felipe Oliva dos Santos, Amanda Rúbia de Figueiredo Trindade, Alex Graça Contato, José Rivaldo dos Santos Filho, Rúbia Carvalho Gomes Corrêa, Rafael Castoldi, Cristina Giatti Marques de Souza, and et al. 2025. "Immobilization of Trametes versicolor Laccase by Interlinked Enzyme Aggregates with Improved pH Stability and Its Application in the Degradation of Bisphenol A" Reactions 6, no. 1: 9. https://doi.org/10.3390/reactions6010009
APA StyleUber, T. M., de Oliveira Pateis, V., Cheute, V. M. S., dos Santos, L. F. O., de Figueiredo Trindade, A. R., Contato, A. G., dos Santos Filho, J. R., Corrêa, R. C. G., Castoldi, R., de Souza, C. G. M., Bracht, A., & Peralta, R. M. (2025). Immobilization of Trametes versicolor Laccase by Interlinked Enzyme Aggregates with Improved pH Stability and Its Application in the Degradation of Bisphenol A. Reactions, 6(1), 9. https://doi.org/10.3390/reactions6010009