Cliff Retreat Rates Associated with a Low-Level Radioactive Waste Disposal Facility in Los Alamos, New Mexico, USA
Abstract
:1. Introduction
2. Background
2.1. Study Site
2.2. Geologic Setting
2.3. Previous Work
3. Materials and Methods
3.1. Cliff and Fracture Characterizations
3.2. Surface Exposure Dating
4. Results
5. Discussion
5.1. Fracture Density, Orientation, and Slope Aspect Thresholds
5.2. Cliff Failure Recurrence Interval and Time to Facility Exposure
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- 42 U.S.C §6901; U.S. Government Publishing Office: Washington, DC, USA, 1976.
- Department of Energy. Radioactive Waste Management; U.S. Department of Energy Order DOE O 435.1; Department of Energy: Washington, DC, USA, 2001. [Google Scholar]
- Moon, V.; Healy, T. Mechanisms of Coastal Cliff Retreat and Hazard Zone Delineation in Soft Flysch Deposits. J. Coast. Res. 1994, 10, 663–680. [Google Scholar] [CrossRef]
- Hurst, M.; Rood, D.; Ellis, M.; Anderson, R.; Dornbusch, U. Recent acceleration in coastal cliff retreat rates on the south coast of Great Britain. Proc. Natl. Acad. Sci. USA 2016, 113, 13336–13341. [Google Scholar] [CrossRef] [PubMed]
- El Khattabi, J.; Carlier, E.; Louche, B. The Effect of Rock Collapse on Coastal Cliff Retreat along the Chalk Cliffs of Northern France. J. Coast. Res. 2018, 34, 136–150. [Google Scholar] [CrossRef]
- Lopez-Saez, J.; Corona, C.; Morel, P.; Rovera, G.; Dewez, T.; Stoffel, M.; Berger, F. Quantification of Cliff Retreat in Coastal Quaternary Sediments Using Anatomical Changes in Exposed Tree Roots. Earth Surf. Process. Landf. 2018, 43, 2983–2997. [Google Scholar] [CrossRef]
- Young, A. Decadal-Scale Coastal Cliff Retreat in Southern and Central California. Geomorphology 2018, 300, 164–175. [Google Scholar] [CrossRef]
- Saunders, I.; Young, A. Rates of Surface Processes on Slopes, Slope Retreat, and Denudation. Earth Surf. Process. Landf. 1983, 8, 473–501. [Google Scholar] [CrossRef]
- Schmidt, K. Hillslopes as Evidence of Climatic Change. In Geomorphology of Desert Environments; Parsons, A., Abrahams, A., Eds.; Springer: Dordrecht, The Netherlands, 2009. [Google Scholar] [CrossRef]
- Griggs, R. Geology and Groundwater Resources of the Los Alamos Area, New Mexico; U.S. Geological Survey Water-Supply Paper 1753; U.S. Geological Survey: Reston, VA, USA, 1964; 106p. [Google Scholar]
- Gardner, J.; Goff, F. Potassium-Argon Dates from the Jemez Volcanic Field: Implications for Tectonic Activity in the North-Central Rio Grande Rift. In Rio Grande Rift: Northern New Mexico, New Mexico Geological Society Guidebook, 35th Field Conference, October 11–13; Baldridge, W., Dickerson, P., Riecker, R., Zidek, J., Eds.; New Mexico Geological Society: Socorro, NM, USA, 1984; pp. 75–81. [Google Scholar]
- Izett, G.; Obradovich, J. 40Ar/39Ar Age Constraints for the Jaramillo Normal Subchron and the Matuyama-Brunhes Geomagnetic Boundary. J. Geophys. Res. 1994, 99, 2925–2934. [Google Scholar] [CrossRef]
- Phillips, E.; Goff, F.; Kyle, P.; McIntosh, W.; Dunbar, N.; Gardner, J. The 40Ar/39Ar Age Constraints on the Duration of Resurgence at the Valles Caldera, New Mexico. J. Geophys. Res. 2007, 112, B08201. [Google Scholar] [CrossRef]
- Abeele, W.; Wheeler, M.; Burton, B. Geohydrology of Bandelier Tuff; Los Alamos National Laboratory Report LA-8962-MS; Los Alamos National Laboratory: Los Alamos, NM, USA, 1981. [Google Scholar]
- Rogers, M. History and Environmental Setting of LASL Near-Surface Land Disposal Facilities for Radioactive Wastes (Areas A, B, C, D, E, F, G, and T); Los Alamos National Laboratory Report LA-6848-MS, Volume 1; Alamos National Laboratory: Los Alamos, NM, USA, 1977; 266p. [Google Scholar]
- Rogers, M. History and Environmental Setting of LASL Near-Surface Land Disposal Facilities for Radioactive Wastes (Areas A, B, C, D, E, F, G, and T); Los Alamos National Laboratory Report LA-6848-MS, Volume 2; Alamos National Laboratory: Los Alamos, NM, USA, 1977; 168p. [Google Scholar]
- Purtymun, W.; Kennedy, W. Geology and Hydrology of Mesita del Buey; Los Alamos National Laboratory Report LA-4660; Alamos National Laboratory: Los Alamos, NM, USA, 1971; 12p. [Google Scholar]
- Broxton, D.; Reneau, S. Stratigraphic Nomenclature of the Bandelier Tuff for the Environmental Restoration Project at Los Alamos National Laboratory; Los Alamos National Laboratory Report LA-13010-MS; Alamos National Laboratory: Los Alamos, NM, USA, 1995. [Google Scholar]
- Wohletz, K. Fracture Characterization of the Bandelier Tuff in OU-1098 (TA-2 and TA-41); Los Alamos National Laboratory Report LA-13194-MS; Los Alamos National Laboratory: Los Alamos, NM, USA, 1996; 19p. [Google Scholar]
- Reneau, S.; McDonald, E. Landscape History and Processes on the Pajarito Plateau, Northern New Mexico. In Rocky Mountain Cell, Friends of the Pleistocene, Field Trip Guidebook; Los Alamos National Laboratory Report LA-UR-96-3035; Los Alamos National Laboratory: Los Alamos, NM, USA, 1996; 195p. [Google Scholar]
- Poths, J.; Goff, F. Using Cosmogenic Nuclides to Estimate Erosion Rates. EOS Trans. Am. Geophys. Union 1990, 71, 1346. [Google Scholar]
- Albrecht, A.; Herzog, G.; Klein, J.; Dezfouly-Arjomandy, B.; Goff, F. Quaternary Erosion and Cosmic-Ray-Exposure History Derived from 10Be and 26Al Produced In Situ—An Example from Pajarito Plateau, Valles Caldera Region. Geology 1993, 21, 551–554. [Google Scholar] [CrossRef]
- Goehring, B.; Wilson, J.; Nichols, K. A Fully Automated System for the Extraction of In Situ Cosmogenic Carbon-14 in the Tulane University Cosmogenic Nuclide Laboratory. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2019, 455, 282–292. [Google Scholar] [CrossRef]
- Hippe, K.; Lifton, N. Calculating Isotope Ratios and Nuclide Concentrations for In Situ Cosmogenic 14C Analyses. Radiocarbon 2014, 56, 1167–1174. [Google Scholar] [CrossRef] [PubMed]
- Lifton, N.; Sato, T.; Dunai, T. Scaling In Situ Cosmogenic Nuclide Production Rates Using Analytical Approximations to Atmospheric Cosmic-Ray Fluxes. Earth Planet. Sci. Lett. 2014, 386, 149–160. [Google Scholar] [CrossRef]
- Lifton, N. Implications for two Holocene Time-Dependent Geomagnetic Models for Cosmogenic Nuclide Production Rate Scaling. Earth Planet. Sci. Lett. 2016, 433, 257–268. [Google Scholar] [CrossRef]
- Jull, A.; Scott, E.; Bierman, P. The CRONUS-Earth Inter-Comparison for Cosmogenic Isotope Analysis. Quat. Geochronol. 2015, 26, 3–10. [Google Scholar] [CrossRef]
- McCalpin, J.P. Late Quaternary activity of the Pajarito fault, Rio Grande rift of northern New Mexico, USA. Tectonophysics 2005, 408, 213–236. [Google Scholar] [CrossRef]
Sample | Latitude (dd) | Longitude (dd) | Elevation (m) | Shielding | Concentration (104 atoms g−1) | Age | Erosion Rate |
---|---|---|---|---|---|---|---|
(ka) | (m Myr−1) | ||||||
15-MDB-01-SS | 35.82813 | −106.23586 | 1998 | 0.5332 | 7.28 ± 0.12 | 3.47 ± 0.07 | 319 ± 6.9 |
15-MDB-02-SS | 35.82895 | −106.23636 | 2000 | 0.4463 | 19.20 ± 0.27 | 21.28 ± 1.38 | 10 ± 1.5 |
15-MDB-03-SS | 35.82897 | −106.23637 | 2000 | 0.4463 | 19.20 ± 0.26 | 21.29 ± 1.38 | 10 ± 1.5 |
15-MDB-04-SS | 35.82862 | −106.23799 | 1997 | 0.6083 | 16.20 ± 0.23 | 7.99 ± 0.19 | 73 ± 2.4 |
15-MDB-05-SS | 35.82836 | −106.23859 | 2001 | 0.6843 | 5.76 ± 0.10 | 2.07 ± 0.04 | 576 ± 12.2 |
15-MDB-08-SS | 35.82912 | −106.24004 | 2004 | 0.6371 | 8.69 ± 0.14 | 3.63 ± 0.07 | 281 ± 6.0 |
15-MDB-10-SS | 35.82996 | −106.24197 | 2010 | 0.8007 | 18.10 ± 0.25 | 6.75 ± 0.15 | 93 ± 2.6 |
15-MDB-12-SS | 35.83016 | −106.24307 | 2012 | 0.799 | 9.17 ± 0.14 | 3.15 ± 0.06 | 325 ± 6.6 |
15-MDB-14-SS | 35.83113 | −106.24581 | 2014 | 0.4833 | 4.70 ± 0.09 | 2.17 ± 0.05 | 615 ± 14.2 |
Raster | Condition When Integer = 1 (Least Desirable) | Condition When Integer = 9 (Most Desirable) |
---|---|---|
Fracture orientation | Fractures sub-parallel to cliff face | Fractures orthogonal to cliff face |
Fracture density | High fracture density | Low fracture density |
Slope aspect | S45° E to S45° W | N45° E and N45° W |
Slope angle | Steep slopes (>60°) | Less steep to shallow slopes (<60°) |
Fracture Orientation | Slope Angle | Aspect | Fracture Density |
---|---|---|---|
0.3545 | 0.303 | 0.2794 | −0.0811 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goehring, B.; Miller, E.; Birdsell, K.; Schultz-Fellenz, E.S.; Kelley, R.; French, S.; Stauffer, P.H. Cliff Retreat Rates Associated with a Low-Level Radioactive Waste Disposal Facility in Los Alamos, New Mexico, USA. GeoHazards 2024, 5, 547-558. https://doi.org/10.3390/geohazards5020028
Goehring B, Miller E, Birdsell K, Schultz-Fellenz ES, Kelley R, French S, Stauffer PH. Cliff Retreat Rates Associated with a Low-Level Radioactive Waste Disposal Facility in Los Alamos, New Mexico, USA. GeoHazards. 2024; 5(2):547-558. https://doi.org/10.3390/geohazards5020028
Chicago/Turabian StyleGoehring, Brent, Elizabeth Miller, Kay Birdsell, Emily S. Schultz-Fellenz, Richard Kelley, Sean French, and Philip H. Stauffer. 2024. "Cliff Retreat Rates Associated with a Low-Level Radioactive Waste Disposal Facility in Los Alamos, New Mexico, USA" GeoHazards 5, no. 2: 547-558. https://doi.org/10.3390/geohazards5020028
APA StyleGoehring, B., Miller, E., Birdsell, K., Schultz-Fellenz, E. S., Kelley, R., French, S., & Stauffer, P. H. (2024). Cliff Retreat Rates Associated with a Low-Level Radioactive Waste Disposal Facility in Los Alamos, New Mexico, USA. GeoHazards, 5(2), 547-558. https://doi.org/10.3390/geohazards5020028