Upgrading a Low-Cost Seismograph for Monitoring Local Seismicity
Abstract
:1. Introduction
2. Specifications of an Upgraded Low-Cost Seismograph
2.1. Low-Cost Hardware and Software Analysis
2.1.1. The Geophone Sensor
2.1.2. The Custom-Made Low-Noise Preamplifier
2.1.3. The Datalogger
2.1.4. The Power Supply
3. Low-Cost Seismograph Installation
4. Data Acquisition and Analysis
4.1. Methodology
4.2. Results
R² = 0.9608
5. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
E/V No | EVENT DATE (EVGI) | EVENT TIME (EVGI) | MAGNITUDE (R) (EVGI) | EPICENTRAL DISTANCE (Km) (EVGI) | FOCAL DEPTH (Km) (EVGI) | HYPOCENTRAL DISTANCE (Km) (EVGI) | AMPLITUDE VELOCITY) (mm/s) (LOW COST) | EVENT NAME (EVGI) |
---|---|---|---|---|---|---|---|---|
1 | 17-05-22 | 01:46:03.812 | 1.65 | 14.42 | 6.467 | 15.80374921 | 13.4964 | auth2022jopx |
2 | 18-05-22 | 00:51:38.290 | 1.66 | 12.35 | 10.092 | 15.94901138 | 18.6442 | auth2022jqjq |
3 | 20-05-22 | 01:41:57.601 | 1.91 | 14.37 | 6.173 | 15.63978353 | 26.1602 | auth2022juch |
4 | 23-05-22 | 13:13:00.052 | 1.89 | 14.70 | 9.112 | 17.29504391 | 33.8431 | auth2022kalp |
5 | 27-05-22 | 10:18:43.042 | 2.23 | 11.82 | 5.536 | 13.05219123 | 55.9847 | auth2022khnw |
6 | 31-05-22 | 21:45:57.839 | 1.74 | 12.01 | 5.977 | 13.4150896 | 28.2974 | auth2022kpso |
7 | 05-06-22 | 01:28:38.571 | 1.35 | 15.42 | 6.957 | 16.91674463 | 6.0631 | auth2022kxhx |
8 | 06-06-22 | 10:49:50.653 | 2.43 | 14.89 | 6.173 | 16.11887183 | 68.021 | auth2022kzvx |
9 | 09-06-22 | 02:41:23.928 | 1.05 | 11.98 | 4.752 | 12.88805276 | 4.8685 | auth2022lesi |
10 | 09-06-22 | 04:23:26.335 | 1.05 | 16.99 | 5.389 | 17.82418079 | 3.3824 | auth2022levr |
11 | 12-06-22 | 03:15:01.573 | 1.86 | 11.52 | 8.9 | 14.55748605 | 23.0425 | auth2022lkfy |
12 | 13-06-22 | 11:33:23.287 | 2.24 | 12.2 | 7.3 | 14.21724305 | 54.7547 | auth2022lmrw |
13 | 23-06-22 | 11:49:14.078 | 2.19 | 12.65 | 3.8 | 13.20842534 | 59.7676 | auth2022mezl |
14 | 01-07-22 | 10:56:36.404 | 1.76 | 11.06 | 2.7 | 11.38479688 | 32.2817 | auth2022mtns |
15 | 05-07-22 | 06:46:27.858 | 2.63 | 14.86 | 8.54 | 17.13917151 | 82.807 | auth2022nanm |
16 | 07-07-22 | 02:29:20.686 | 2.27 | 13.86 | 10.778 | 17.55747374 | 41.0083 | auth2022ndvz |
17 | 10-07-22 | 11:29:27.081 | 2.1 | 7.22 | 7.251 | 10.23256571 | 87.4194 | auth2022nkai |
18 | 14-07-22 | 22:41:08.174 | 1.99 | 17.9 | 3.1 | 18.1664526 | 25.8898 | auth2022nsem |
19 | 18-07-22 | 10:05:45.219 | 1.61 | 18.25 | 4.3 | 18.74973333 | 9.0717 | auth2022nynp |
20 | 11-08-22 | 17:13:21.639 | 1.99 | 11.95 | 8.328 | 14.56564739 | 35.5793 | auth2022pqxt |
21 | 12-08-22 | 00:55:14.752 | 1.48 | 17.54 | 2.733 | 17.75164468 | 9.1228 | auth2022prna |
22 | 15-08-22 | 22:04:13.527 | 2.3 | 13.19 | 8.524 | 15.70460684 | 73.2183 | auth2022pypk |
23 | 18-08-22 | 10:32:02.622 | 2.11 | 18.91 | 11.562 | 22.16456505 | 26.5712 | auth2022qdfb |
24 | 22-08-22 | 11:25:21.130 | 2.74 | 13.62 | 3.625 | 14.09414861 | 146.6278 | auth2022qkov |
25 | 26-08-22 | 21:33:47.603 | 2.37 | 10.52 | 11.366 | 15.4872966 | 98.033 | auth2022qsqx |
26 | 27-08-22 | 08:41:01.634 | 1.81 | 9.31 | 11.268 | 14.61656334 | 26.9657 | auth2022qtmx |
27 | 27-08-22 | 21:33:40.467 | 1.69 | 17.47 | 8.916 | 19.61366758 | 12.6236 | auth2022qumk |
28 | 16-09-22 | 03:33:54.103 | 1.97 | 10.76 | 2.646 | 11.08056479 | 42.7446 | auth2022sdqw |
29 | 13-10-22 | 02:16:21.907 | 1.42 | 10.58 | 5.585 | 11.96363762 | 13.2762 | auth2022uaww |
30 | 26-10-22 | 10:38:15.036 | 2.74 | 16.63 | 19.694 | 25.77616217 | 125.3326 | auth2022uzgz |
31 | 31-10-22 | 01:01:21.256 | 2.5 | 23.45 | 6.173 | 24.24888511 | 62.8158 | auth2022vhrl |
32 | 01-11-22 | 12:38:49.545 | 2.36 | 9.39 | 6.124 | 11.21050739 | 141.7646 | auth2022vkjz |
33 | 03-11-22 | 15:03:00.502 | 1.27 | 10.22 | 9.014 | 13.62720059 | 9.9755 | auth2022vofs |
34 | 07-11-22 | 16:56:19.215 | 2.35 | 12.52 | 4.801 | 13.40895227 | 70.6975 | auth2022vvrm |
35 | 21-11-22 | 22:12:09.494 | 2.46 | 14.47 | 8.916 | 16.99635126 | 62.5576 | auth2022wvqy |
36 | 06-12-22 | 05:06:13.167 | 2.35 | 11.93 | 5.6 | 13.179 | 117.1648 | auth2022xvtq |
37 | 25-12-22 | 11:41:50.889 | 2.84 | 12.07 | 5.683 | 13.34096657 | 186.113 | auth2022zezg |
38 | 01-01-23 | 12:28:01.829 | 1.97 | 8.79 | 6.614 | 11.00041345 | 55.5318 | auth2023aayr |
39 | 06-01-23 | 20:55:36.347 | 2.97 | 13.97 | 5.144 | 14.88696195 | 223.1903 | auth2023aksy |
40 | 03-02-23 | 05:30:17.541 | 2.03 | 14.24 | 9.112 | 16.90580208 | 46.8723 | auth2023cism |
41 | 10-02-23 | 23:31:48.461 | 1.67 | 13.11 | 10.092 | 16.54450253 | 15.8004 | auth2023cwws |
42 | 16-02-23 | 18:48:42.426 | 3.22 | 15.36 | 4.44 | 15.98884611 | 222.2577 | auth2023dhmj |
43 | 19-02-23 | 17:38:00.606 | 2.02 | 14.53 | 9.308 | 17.25571685 | 42.2152 | auth2023dmwo |
44 | 31-03-23 | 02:13:51.707 | 0.93 | 10.5 | 6.761 | 12.48843949 | 5.9021 | auth2023ggue |
45 | 19-04-23 | 20:18:39.725 | 1.98 | 11.03 | 2.225 | 11.25217868 | 43.6222 | auth2023hqwn |
46 | 20-04-23 | 17:31:06.999 | 2.93 | 14.12 | 4.507 | 14.82185714 | 166.4831 | auth2023hsmn |
47 | 28-04-23 | 17:52:53.444 | 2.13 | 15.28 | 10.288 | 18.42067708 | 28.6996 | auth2023ihdg |
48 | 06-05-23 | 23:52:27.083 | 1.64 | 14.55 | 2.358 | 14.73983256 | 14.5944 | auth2023iwfd |
49 | 16-05-23 | 14:25:58.561 | 2.28 | 9.42 | 10.582 | 14.16739651 | 83.8643 | auth2023jntm |
50 | 18-05-23 | 07:18:09.696 | 2.26 | 8.24 | 8.328 | 11.7155104 | 124.9216 | auth2023jqwj |
51 | 07-06-23 | 04:44:40.063 | 2.39 | 9.48 | 12.248 | 15.4882 | 121.3965 | auth2023lbfj |
52 | 30-06-23 | 03:29:39.357 | 2.62 | 12.65 | 8.916 | 15.47635474 | 133.6742 | auth2023mrdm |
53 | 11-07-23 | 20:47:13.691 | 1.25 | 8.88 | 10.778 | 13.96494483 | 11.6498 | auth2023nmog |
54 | 12-07-23 | 10:40:45.087 | 2.59 | 11.55 | 9.112 | 14.71159556 | 113.6208 | auth2023nnps |
55 | 13-07-23 | 15:28:53.338 | 1.6 | 12.47 | 1.83 | 12.60356299 | 16.3874 | auth2023nput |
56 | 19-07-23 | 22:22:33.409 | 1.42 | 9.42 | 9.994 | 13.73376991 | 10.5396 | auth2023obhk |
57 | 22-07-23 | 13:08:41.715 | 2.07 | 14.79 | 3.437 | 15.1841058 | 49.6679 | auth2023ogbq |
58 | 25-07-23 | 03:26:32.890 | 2.35 | 12.88 | 9.504 | 16.00688652 | 103.1323 | auth2023okuy |
59 | 28-07-23 | 13:27:02.579 | 1.52 | 12.79 | 4.148 | 13.44581734 | 17.5778 | auth2023orbg |
60 | 09-08-23 | 12:32:00.243 | 2.03 | 5.71 | 9.308 | 10.91984267 | 80.3042 | auth2023pmxm |
E/V No | MAGNITUDE (EVGI) | M-CALCULATED EPICENTRAL | M-CALCULATED HYPOCENTRAL | M-DIFFERENCE EPICENTRAL | M-DIFFERENCE HYPOCENTRAL | Ci EPICENTRAL | Ci HYPOCENTRAL | EVENT NAME (EVGI) |
---|---|---|---|---|---|---|---|---|
1 | 1.65 | 1.6571 | 1.6163 | 0.0071 | 0.0337 | 1.8225 | 1.7669 | auth2022jopx |
2 | 1.66 | 1.704 | 1.7622 | 0.0440 | 0.1022 | 1.7856 | 1.631 | auth2022jqjq |
3 | 1.91 | 1.9424 | 1.8974 | 0.0324 | 0.0126 | 1.7972 | 1.7458 | auth2022juch |
4 | 1.89 | 2.0680 | 2.0706 | 0.1780 | 0.1806 | 1.6516 | 1.5526 | auth2022kalp |
5 | 2.23 | 2.1552 | 2.1184 | 0.0748 | 0.1116 | 1.9044 | 1.8448 | auth2022khnw |
6 | 1.74 | 1.8684 | 1.8386 | 0.1284 | 0.0986 | 1.7012 | 1.6346 | auth2022kpso |
7 | 1.35 | 1.3502 | 1.2364 | 0.0002 | 0.1136 | 1.8294 | 1.8468 | auth2022kxhx |
8 | 2.43 | 2.3789 | 2.3602 | 0.0511 | 0.0698 | 1.8807 | 1.803 | auth2022kzvx |
9 | 1.05 | 1.1026 | 1.1855 | 0.0526 | 0.1355 | 1.7770 | 1.5977 | auth2022lesi |
10 | 1.05 | 1.1558 | 0.8919 | 0.1058 | 0.1581 | 1.7238 | 1.8913 | auth2022levr |
11 | 1.86 | 1.7542 | 1.7991 | 0.1058 | 0.0609 | 1.9354 | 1.7941 | auth2022lkfy |
12 | 2.24 | 2.1645 | 2.1614 | 0.0755 | 0.0786 | 1.9051 | 1.8118 | auth2022lmrw |
13 | 2.19 | 2.2243 | 2.1543 | 0.0343 | 0.0357 | 1.7953 | 1.7689 | auth2022mezl |
14 | 1.76 | 1.8763 | 1.7972 | 0.1163 | 0.0372 | 1.7133 | 1.696 | auth2022mtns |
15 | 2.63 | 2.4631 | 2.4533 | 0.1669 | 0.1767 | 1.9965 | 1.9099 | auth2022nanm |
16 | 2.27 | 2.1158 | 2.1632 | 0.1542 | 0.1068 | 1.9838 | 1.84 | auth2022ndvz |
17 | 2.1 | 2.0559 | 2.1661 | 0.0441 | 0.0661 | 1.8737 | 1.6671 | auth2022nkai |
18 | 1.99 | 2.0717 | 1.9844 | 0.0817 | 0.0056 | 1.7479 | 1.7388 | auth2022nsem |
19 | 1.61 | 1.6281 | 1.5464 | 0.0181 | 0.0636 | 1.8115 | 1.7968 | auth2022nynp |
20 | 1.99 | 1.9649 | 1.9877 | 0.0251 | 0.0023 | 1.8547 | 1.7355 | auth2022pqxt |
21 | 1.48 | 1.6062 | 1.4424 | 0.1262 | 0.0376 | 1.7034 | 1.7708 | auth2022prna |
22 | 2.3 | 2.3376 | 2.5588 | 0.0376 | 0.2588 | 1.7920 | 1.4744 | auth2022pypk |
23 | 2.11 | 2.1167 | 1.841 | 0.0067 | 0.2690 | 1.8229 | 2.0022 | auth2022qdfb |
24 | 2.74 | 2.6586 | 2.64 | 0.0814 | 0.1000 | 1.9110 | 1.8332 | auth2022qkov |
25 | 2.37 | 2.3288 | 2.43 | 0.0412 | 0.0600 | 1.8708 | 1.6732 | auth2022qsqx |
26 | 1.81 | 1.6955 | 2.0492 | 0.1145 | 0.2392 | 1.9441 | 1.4940 | auth2022qtmx |
27 | 1.69 | 1.7449 | 1.3732 | 0.0549 | 0.3168 | 1.7748 | 2.0500 | auth2022qumk |
28 | 1.97 | 1.9818 | 1.9488 | 0.0118 | 0.0212 | 1.8178 | 1.7544 | auth2022sdqw |
29 | 1.42 | 1.4639 | 1.9119 | 0.0439 | 0.4919 | 1.7857 | 1.2413 | auth2022uaww |
30 | 2.74 | 2.7116 | 2.8485 | 0.0284 | 0.1085 | 1.8580 | 1.6247 | auth2022uzgz |
31 | 2.5 | 2.6239 | 2.0771 | 0.1239 | 0.4229 | 1.7057 | 2.1561 | auth2022vhrl |
32 | 2.36 | 2.4213 | 2.5478 | 0.0613 | 0.1878 | 1.7683 | 1.5454 | auth2022vkjz |
33 | 1.27 | 1.3191 | 1.3855 | 0.0491 | 0.1155 | 1.7805 | 1.6177 | auth2022vofs |
34 | 2.35 | 2.2910 | 2.3799 | 0.0590 | 0.0299 | 1.8886 | 1.7033 | auth2022vvrm |
35 | 2.46 | 2.3252 | 2.173 | 0.1348 | 0.287 | 1.9644 | 2.0202 | auth2022wvqy |
36 | 2.35 | 2.4814 | 2.4523 | 0.1314 | 0.1023 | 1.6982 | 1.6309 | auth2022xvtq |
37 | 2.84 | 2.6894 | 2.5375 | 0.1506 | 0.3025 | 1.9802 | 2.0357 | auth2022zezg |
38 | 1.97 | 1.9751 | 2.1943 | 0.0051 | 0.2243 | 1.8245 | 1.5089 | auth2023aayr |
39 | 2.97 | 2.8564 | 2.6095 | 0.1136 | 0.3605 | 1.9432 | 2.0937 | auth2023aksy |
40 | 2.03 | 2.1902 | 2.1981 | 0.1602 | 0.1681 | 1.6694 | 1.5651 | auth2023cism |
41 | 1.67 | 1.6680 | 1.7127 | 0.0020 | 0.0427 | 1.8316 | 1.6905 | auth2023cwws |
42 | 3.22 | 2.9120 | 2.84 | 0.3080 | 0.38 | 2.1376 | 2.1132 | auth2023dhmj |
43 | 2.02 | 2.1569 | 2.1652 | 0.1369 | 0.1452 | 1.6927 | 1.588 | auth2023dmwo |
44 | 0.93 | 1.1073 | 1.1147 | 0.1773 | 0.1847 | 1.6523 | 1.5485 | auth2023ggue |
45 | 1.98 | 2.0054 | 1.9209 | 0.0254 | 0.0591 | 1.8042 | 1.7923 | auth2023hqwn |
46 | 2.93 | 2.7355 | 2.6685 | 0.1945 | 0.2615 | 2.0241 | 1.9947 | auth2023hsmn |
47 | 2.13 | 2.0199 | 2.0376 | 0.1101 | 0.0924 | 1.9397 | 1.8256 | auth2023ihdg |
48 | 1.64 | 1.6965 | 1.6079 | 0.0565 | 0.0321 | 1.7731 | 1.7653 | auth2023iwfd |
49 | 2.28 | 2.1952 | 2.2295 | 0.0848 | 0.0505 | 1.9144 | 1.7837 | auth2023jntm |
50 | 2.26 | 2.2890 | 2.6954 | 0.0290 | 0.4354 | 1.8006 | 1.2978 | auth2023jqwj |
51 | 2.39 | 2.3596 | 2.504 | 0.0304 | 0.114 | 1.8600 | 1.6192 | auth2023lbfj |
52 | 2.62 | 2.5739 | 2.4314 | 0.0461 | 0.1886 | 1.8757 | 1.9218 | auth2023mrdm |
53 | 1.25 | 1.3029 | 1.5401 | 0.0529 | 0.2901 | 1.7767 | 1.4431 | auth2023nmog |
54 | 2.59 | 2.4487 | 2.5288 | 0.1413 | 0.0612 | 1.9709 | 1.7944 | auth2023nnps |
55 | 1.6 | 1.6537 | 1.6256 | 0.0537 | 0.0256 | 1.7759 | 1.7076 | auth2023nput |
56 | 1.42 | 1.2945 | 1.4654 | 0.1255 | 0.0454 | 1.9551 | 1.6878 | auth2023obhk |
57 | 2.07 | 2.2383 | 2.0453 | 0.1683 | 0.0247 | 1.6613 | 1.7579 | auth2023ogbq |
58 | 2.35 | 2.4721 | 2.5073 | 0.1221 | 0.1573 | 1.7075 | 1.5759 | auth2023okuy |
59 | 1.52 | 1.6994 | 1.6332 | 0.1794 | 0.1132 | 1.6502 | 1.62 | auth2023orbg |
60 | 2.03 | 1.8812 | 2.168 | 0.1488 | 0.138 | 1.9784 | 1.5952 | auth2023pmxm |
Figure 7 | Event No | Magnitude (R) (EVGI) | Epicentral Distance (Km) (EVGI) | Focal Depth (Km) (EVGI) | Peak Velocity (mm/s) (LOW COST) |
---|---|---|---|---|---|
a | No7 | 1.35 | 15.42 | 6.95 | 6.0631 |
b | No21 | 1.48 | 17.54 | 2.73 | 9.1228 |
c | No3 | 1.91 | 14.37 | 6.17 | 26.1602 |
d | No16 | 2.27 | 13.86 | 10.77 | 41.0083 |
e | No5 | 2.23 | 11.82 | 5.53 | 55.9847 |
f | No17 | 2.1 | 7.22 | 7.25 | 87.4194 |
g | No30 | 2.74 | 16.63 | 19.69 | 125.3326 |
h | No37 | 2.84 | 12.07 | 5.68 | 186.1130 |
i | No42 | 3.22 | 15.36 | 4.44 | 222.2577 |
j | No39 | 2.97 | 13.97 | 5.14 | 223.1903 |
System | Technology | Performance | Cost Category | Applications | Advantages |
---|---|---|---|---|---|
Raspberry Shake | Geophones + Raspberry Pi | Good for local/regional seismic monitoring | Medium | Educational, citizen science, research | Open source, user-friendly, global community |
Geophonino | Arduino + Geophones | Limited to local seismic detection | Low | Microseismic studies, education | Low-cost, Arduino-based customization |
SmartSolo | MEMS-based geophone system | High sensitivity, suitable for small earthquakes | High | Passive surveys, oil exploration | Lightweight, autonomous operation |
Güralp CMG-6TD | Compact broadband seismometer | Excellent for weak signals and broad frequency | Very High | Research-grade seismic monitoring | High sensitivity, integrated digitizer |
MEMS Accelerographs | MEMS accelerometers | Strong motion detection but limited weak signals | Low | Structural health monitoring, strong motion | Compact, cost-effective |
Kronos | Custom-built DAQ system | High accuracy for microseismic monitoring | Medium | Research, microseismic studies | Reliable, research-grade data acquisition |
DigiSeis | PC sound card-based | Basic performance, limited dynamic range | Very Low | Educational, small-scale projects | Extremely low-cost, PC-based simplicity |
System Before Upgrade | Geophone, Ceramic Accelerometer, Raspberry Pi, and Arduino | Local–regional seismic monitoring with a maximum estimation error of +/− 0.4 R | Medium | Microseismic studies, education | Reliable, research-grade data acquisition |
Upgraded System (This work) | Geophone and Raspberry Pi, ADS1256 24bit A/D board, Custom build preamplifier | Local–regional seismic monitoring with a maximum estimation error of +/− 0.087 R | Low | Microseismic studies, education | Compact, cost-effective |
References
- Karakostas, V.; Papadimitriou, E.; Mesimeri, M.; Gkarlaouni, C.; Paradisopoulou, P. The 2014 Kefalonia Doublet (MW6.1 and MW6.0), Central Ionian Islands, Greece: Seismotectonic Implications along the Kefalonia Transform Fault Zone. Acta Geophys. 2014, 63, 176–193. [Google Scholar] [CrossRef]
- Yasin, M.; Apsari, R.; Ningsih, K.; Yhuwana, Y.; Zulkarnaen, M.; Djamal, M.; Meilano, I.; Evita, M.; Aminah, N.S.; Srigutomo, W.; et al. Detection of seismograph signals using fiber bundle sensors. Optik 2020, 208, 164–169. [Google Scholar] [CrossRef]
- Kim, K.H.; Seo, W.; Han, J.; Kwon, J.; Kang, S.Y.; Ree, J.-H.; Kim, S.; Liu, K. The 2017 ML 5.4 Pohang earthquake sequence, Korea, recorded by a dense seismic network. Tectonophysics 2020, 774, 288–306. [Google Scholar] [CrossRef]
- Ramdeane, A.; Lynch, L. Low cost seismic data acquisition system based on open source hardware and software tools. In Proceedings of the International Conference on Emerging Trends in Engineering & Technology (IConETech-2020), St. Augustine, Trinidad and Tobago, 13–15 March 2020. [Google Scholar]
- Kafadar, O. A Geophone-Based and Low-Cost Data Acquisition and Analysis System Designed for Microtremor Measurements; Department of Computer Programming, Kocaeli University Turkey: Kocaeli, Turkey, 2020. [Google Scholar]
- Zhu, C.; Xu, J.; He, M.; Karakus, M.; Zhang, W.; Wu, Y. Amplification of ground vibration on a rocky hill and its environs under cylindrical SH waves. Rock Mech. Rock Eng. 2024, 57, 2727–2738. [Google Scholar] [CrossRef]
- Pascale, A. Seismometers & accelerometers: Are you using the right sensor for the job? In Proceedings of the 11th Asian Seismological Commission General Assembly, Seismology Research Centre, Melbourne, VIC, Australia, 25–27 November 2023. [Google Scholar]
- Ferreira, J.M.; França, G.S.; Vilar, C.S.; do Nascimento, A.F.; Bezerra, F.H.R.; Assumpção, M. Induced seismicity in the Castanhão reservoir, NE Brazil—Preliminary results. Tectonophysics 2008, 456, 103–110. [Google Scholar] [CrossRef]
- Fnais, M.S.; Abdelrahman, K.; Al-Amri, A.M. Microtremor measurements in Yanbu city of Western Saudi Arabia: A tool for seismic microzonation. Science 2010, 22, 97–110. [Google Scholar] [CrossRef]
- Carreras, N.; Moure, D.; Gomáriz, S.; Mihai, D.; Mànuel, A.; Ortiz, R. Design of a smart and wireless seismometer for volcanology monitoring. Measurement 2017, 97, 174–185. [Google Scholar] [CrossRef]
- Hasan, M.; Mayaka, J.K.; Jung, J.C. Development of earthquake instrumentation for shutdown and restart criteria of the nuclear power plant using multivariable decision-making process. Nucl. Eng. Technol. 2018, 50, 860–868. [Google Scholar] [CrossRef]
- Khan, K.A.; Akhter, G.; Ahmad, Z. DigiSeis—A software component for digitizing seismic signals using the PC sound card. Comput. Geosci. 2012, 43, 217–220. [Google Scholar] [CrossRef]
- Soler-Llorens, J.L.; Galiana-Merino, J.J.; Giner-Caturla, J.; Jauregui-Eslava, P.; Rosa-Cintas, S.; Rosa-Herranz, J. Development and programming of Geophonino: A low-cost Arduino-based seismic recorder for vertical geophones. Comput. Geosci. 2016, 94, 1–10. [Google Scholar] [CrossRef]
- Soler-Llorens, J.L.; Galiana-Merino, J.J.; Giner-Caturla, J.J.; Jauregui-Eslava, P.; Rosa-Cintas, S.; Rosa-Herranz, J.; Benabdeloued, B.Y.N. Design and test of Geophonino-3D: A low-cost three-component seismic noise recorder for the application of the H/V method. Sens. Actuators A Phys. 2018, 269, 342–354. [Google Scholar] [CrossRef]
- Kafadar, Ö.; Sertcelik, İ. A computer aided data acquisition system for multichannel seismic monitoring and recording. IEEE Sens. J. 2016, 16, 6866–6873. [Google Scholar] [CrossRef]
- Bravo-Haro, M.A.; Ding, X.; Elghazouli, A.Y. MEMS-based low-cost and open-source accelerograph for earthquake strong-motion. Eng. Struct. 2020, 213, 111675. [Google Scholar] [CrossRef]
- Patel, V.K.; Patel, M.N. Development of smart sensing unit for vibration measurement by embedding accelerometer with the Arduino microcontroller. Int. J. Instrum. Sci. 2017, 6, 1–7. [Google Scholar]
- Santoso, D.R.; Maryanto, S.; Nadhir, A. Application of single MEMS-accelerometer to measure 3-axis vibrations and 2-axis tilt-angle simultaneously. Telkomnika 2015, 13, 442–450. [Google Scholar] [CrossRef]
- Nur’aidha, A.C.; Santoso, D.R.; Maryanto, S. Development of seismic data acquisition based on MEMS accelerometer MMA7361L. Int. J. Appl. Eng. Res. 2018, 13, 7926–7931. [Google Scholar]
- Karakostas, C.Z.; Papanikolaou, V.K. A low-cost instrumentation approach for seismic hazard assessment in urban areas. Risk Anal. 2014, 9, 97–107. [Google Scholar]
- Papanikolaou, V.K.; Karakostas, C.Z.; Theodoulidis, N.P. A low-cost instrumentation system for seismic hazard assessment in urban areas. Sensors 2021, 21, 3618. [Google Scholar] [CrossRef] [PubMed]
- Holmgren, J.; Werner, M.J. Raspberry Shake instruments provide initial ground-motion assessment of the induced seismicity at the United Downs Deep Geothermal Power Project in Cornwall, United Kingdom. Seism. Rec. 2021, 1, 27–34. [Google Scholar] [CrossRef]
- Calais, E.; Boisson, D.; Symithe, S.J.; Momplaisir, R.; Ulysse, S.; Etienne, G.P.; Deschamps, A.; Monfret, T.; Ampuero, J.-P.; Fallou, L.; et al. Monitoring Haiti’s quakes with Raspberry Shake. Eos 2019, 100, EO123345. [Google Scholar] [CrossRef]
- Dean, T.; Nguyen, N.; Kepic, A. How to Build Your Own Simple, Low-Cost, Seismic System; Curtin University: Bentley, WA Australia, 2018. [Google Scholar]
- Samsidar, S.A.; Afuar, W.; Handayani, G. Design and development of digital seismic amplifier recorder. AIP Conf. Proc. 2015, 1656, 040009. [Google Scholar]
- D’Alessandro, A.; Vitale, G. KRONOS: A low-cost data-logger for seismological applications. In Proceedings of the 24th IMEKO TC4 International Symposium and 22nd International Workshop on ADC and DAC Modelling and Testing. IMEKO TC-4, Palermo, Italy, 14–16 September 2020; pp. 1–6. [Google Scholar]
- Krokidis, S.; Vlachos, I.; Avlonitis, M.; Kostoglou, A.; Karakostas, V. Data-driven performance evaluation of a low-cost seismograph. Meas. Control 2022, 55, 340. [Google Scholar] [CrossRef]
- Vlachos, I.; Avlonitis, M.; Karakostas, V. Conception design and implementation of a low-cost effective seismograph. In Proceedings of the 6th International Conference on Civil Protection & New Technologies SAFE CORFU 2019, Corfu Island, Greece, 6–9 November 2019. [Google Scholar]
- Scordilis, E.M.; Kementzetzidou, D.; Papazachos, B.C. Local magnitude calibration of the Hellenic Unified Seismic Network. J. Seismol. 2016, 20, 319–332. [Google Scholar] [CrossRef]
- Havskov, J.; Alguacil, G. Instrumentation in Earthquake Seismology; Institute of Solid Earth Physics, University of Bergen: Bergen, Norway; Instituto Andaluz de Geofisica, University of Granada: Granada, Spain, 2010. [Google Scholar]
- Chaitanya, P.S.; Kalesh, B.; Karthik, N.; Shruthi, G. Design of low noise amplifier for seismic signals. Int. J. Adv. Eng. Res. Dev. 2017, 4, 21–27. [Google Scholar]
- Ni, X.; Zheng, Y.; Xu, Y. Ultra-Low Noise Differential Pre-Amplifier Design and Its Noise Floor Measurement; Institution of Oceanographic Instrumentation, Shandong Academy of Sciences: Qingdao, China, 2016. [Google Scholar]
- Wieczorek, P.Z.; Starecki, T.; Tittel, F.K. Improving the signal to noise ratio of QTF preamplifiers dedicated for QEPAS applications. Sensors 2020, 20, 3612. [Google Scholar] [CrossRef]
- Prasad, G. Circuit Simulation Examples Using LTspice; Technical Report; Manipal Institute of Technology, Manipal University: Manipal, Karnataka, India, 2016. [Google Scholar]
- Gei, D.; Hallo, M.; Oprsal, I.; Gei, D.; Mohammed, A. The peak frequency of direct waves for microseismic events. Geophysics 2013, 78, A45–A49. [Google Scholar]
- Geospace Technologies GS11D. Desy 2020. Available online: https://vibration.desy.de/equipment/geophones/gs_11d/ (accessed on 12 August 2024).
- Sushko, I.O.; Vistyzenko Ye, V.; Movchanyuk, A.V.; Antypenko, R.V.; Serha, A.V. Geophone Equivalent Circuit for Simulation Tasks in SPICE Packages; National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”: Kyiv, Ukraine, 2018. [Google Scholar]
- Agathos, L.; Avgoustis, A.; Avgoustis, N.; Vlachos, I.; Karydis, I.; Avlonitis, M. Identifying earthquakes in low-cost sensor signals contaminated with vehicular noise. Appl. Sci. 2023, 13, 10884. [Google Scholar] [CrossRef]
- Aravantinos-Zafiris, N.; Vlachos, I.; Katerelos, D.T.G.; Sigalas, M.M.; Avlonitis, M. Using low-cost seismic recording infrastructure for potential evaluation of simulation models on seismic surface waves spatial distribution. In Proceedings 8th International Colloquium on Historical Earthquakes, Palaeo- Macroseismology and Seismotectonics, Lixouri, Greece, 17–20 September 2023; Greece Bulletin of the Geological Society of Greece; Geological Society of Greece: Athens, Greece, 2023; pp. 217–220. Available online: https://8ichisteq.gr/wp-content/uploads/2023/09/8ichisteq_BOA-final_small.pdf (accessed on 10 October 2024).
- Baba, A.B.; Papadimitriou, E.E.; Papazachos, B.C.; Papaioannou, C.A.; Karakostas, B.G. Unified local magnitude scale for earthquakes of the South Balkan area. Pure Appl. Geophys. 2000, 157, 765–783. [Google Scholar] [CrossRef]
- Papadimitriou, P.; Kaviris, G.; Makropoulos, K. The MW = 6.3 2003 Lefkada earthquake (Greece) and induced stress transfer changes. Tectonophysics 2006, 423, 73–82. [Google Scholar] [CrossRef]
- Papanikolaou, D. Major paleogeographic, tectonic, and geodynamic changes from the last stage of the Hellenides to the actual Hellenic arc and trench system. Proc. Geol. Soc. Greece 2017, 43, 72. [Google Scholar] [CrossRef]
- Angelier, J.; Lyberis, N.; Le Pichon, X.; Barrier, E.; Huchon, P. The tectonic development of the Hellenic arc and the sea of Crete: A synthesis. Tectonophysics 1982, 86, 159–196. [Google Scholar] [CrossRef]
- Trnkoczy, A.; Bormann, P.; Hanka, W.; Holcomb, L.G.; Nigbor, R.L. Site selection, preparation, and installation of seismic stations. In New Manual of Seismological Observatory Practice; Deutsches GeoForschungsZentrum: Potsdam, Germany, 2012; Volume 139, pp. 1–25. [Google Scholar]
- Frigo, M.; Johnson, S.G. FFTW: An adaptive software architecture for the FFT. In Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, Seattle, WA, USA, 15 May 1998. [Google Scholar]
MAGNITUDE DIFFERENCE (EPICENTRAL) | MAGNITUDE DIFFERENCE (HYPOCENTRAL) | |
---|---|---|
MAX ERROR | 0.3080 | 0.4919 |
MIN ERROR | 0.0002 | 0.0023 |
MEAN ERROR (60 EVENTS) | 0.0871 | 0.1433 |
EPICENTRAL DISTANCE 0–10 Km | EPICENTRAL DISTANCE 10–23.45 Km | |
---|---|---|
FOCAL DEPTH 5–10 Km | 0.0792 | 0.093 |
FOCAL DEPTH 10–15 Km | 0.0587 | 0.068 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vlachos, I.; Anagnostou, M.N.; Avlonitis, M.; Karakostas, V. Upgrading a Low-Cost Seismograph for Monitoring Local Seismicity. GeoHazards 2025, 6, 4. https://doi.org/10.3390/geohazards6010004
Vlachos I, Anagnostou MN, Avlonitis M, Karakostas V. Upgrading a Low-Cost Seismograph for Monitoring Local Seismicity. GeoHazards. 2025; 6(1):4. https://doi.org/10.3390/geohazards6010004
Chicago/Turabian StyleVlachos, Ioannis, Marios N. Anagnostou, Markos Avlonitis, and Vasileios Karakostas. 2025. "Upgrading a Low-Cost Seismograph for Monitoring Local Seismicity" GeoHazards 6, no. 1: 4. https://doi.org/10.3390/geohazards6010004
APA StyleVlachos, I., Anagnostou, M. N., Avlonitis, M., & Karakostas, V. (2025). Upgrading a Low-Cost Seismograph for Monitoring Local Seismicity. GeoHazards, 6(1), 4. https://doi.org/10.3390/geohazards6010004