The Evolution of Volatile Memory Forensics
Abstract
:1. Introduction
1.1. Contributions
1.2. Threat to Validity
1.3. Limitations
2. Literature Review
2.1. Memory Acquisition Literature
2.2. Volatile Memory Analysis Literature
3. Memory Acquisition
3.1. Taxonomy
3.2. Acquisition Techniques
3.2.1. User Level
3.2.2. Kernel Level
3.2.3. Hypervisor Level
3.2.4. System Management Level
3.2.5. Asynchronous Device Level
Access Level | Type | Tool Name | Pre-Incident | Post-Incident | Terminating | Non-Terminating |
---|---|---|---|---|---|---|
Kernel Level | Kernel Drivers | Pmem [14] LiME [15] ProcDump [16] | x | x | ||
Crash Dump Files | Built in | x | x | |||
Hibernation Files | Built in | x | x | |||
Debuggers | GNU Project Debugger [19] WinDbg [20] Visual Studio [21] | x | x | x | ||
Hypervisor Level | Hypervisor | VMWare [22] LibVMI [23] | x | x | ||
Hypervisor | Hypersleuth [24] Vis [25] Cheng et al. [26] | x | x | |||
System Management Level | BIOS-level | SmmBackdoor [27] | x | x | ||
Asynchronous Device Level | Direct Memory Access | PCILeech [28] Inception [29] | x | x | ||
Hardware Thread Control Block | Snipsnap [30] | x | x | |||
Cold Boot | Built in | x | x |
3.3. Discussion
4. Memory Analysis
4.1. Tooling
4.1.1. Volatility
Performance
Basic Capabilities
4.1.2. Rekall
4.1.3. Discussion
4.2. Traditional Memory Forensic Approaches
4.2.1. Scanning Methods
Signature Scanning
Heuristic Scanning
4.2.2. Dynamic Analysis within a Sandbox
Virtualized Environments
Software Emulators
Sandbox Tools
4.3. Machine Learning Approaches
4.3.1. Feature Engineering Approaches
4.3.2. Computer Vision Approaches
4.4. Discussion
4.5. Future Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cyberattacks 2021: Statistics from the Last Year. 2022. Available online: https://spanning.com/blog/cyberattacks-2021-phishing-ransomware-data-breach-statistics/ (accessed on 12 July 2022).
- What Is Fileless Malware? Available online: https://www.trellix.com/en-us/security-awareness/ransomware/what-is-fileless-malware.html (accessed on 12 July 2022).
- WatchGuard Technologies, I. New Research: Fileless Malware Attacks Surge by 900% and Cryptominers Make a Comeback, While Ransomware Attacks Decline. 2021. Available online: https://www.globenewswire.com/news-release/2021/03/30/2201173/0/en/New-Research-Fileless-Malware-Attacks-Surge-by-900-and-Cryptominers-Make-a-Comeback-While-Ransomware-Attacks-Decline.html#:~:text=Among%20its%20most%20notable%20findings,in%202020%20compared%20to%202019 (accessed on 12 July 2022).
- Latzo, T.; Palutke, R.; Freiling, F. A universal taxonomy and survey of forensic memory acquisition techniques. Digit. Investig. 2019, 28, 56–69. [Google Scholar] [CrossRef]
- VöMel, S.; Freiling, F.C. A Survey of Main Memory Acquisition and Analysis Techniques for the Windows Operating System. Digit. Investig. 2011, 8, 3–22. [Google Scholar] [CrossRef]
- Or-Meir, O.; Nissim, N.; Elovici, Y.; Rokach, L. Dynamic Malware Analysis in the Modern Era—A State of the Art Survey. ACM Comput. Surv. 2019, 52, 88. [Google Scholar] [CrossRef] [Green Version]
- Sudhakar; Kumar, S. An emerging threat Fileless Malware: A survey and research challenges. Cybersecurity 2020, 3, 1. [Google Scholar] [CrossRef] [Green Version]
- Taylor, J.; Turnbull, B.; Creech, G. Volatile Memory Forensics Acquisition Efficacy: A Comparative Study towards Analysing Firmware-Based Rootkits. In Proceedings of the 13th International Conference on Availability, Reliability and Security—ARES 2018, Hamburg, Germany, 27–30 August 2018; Association for Computing Machinery: New York, NY, USA, 2018. [Google Scholar] [CrossRef]
- Sanjay, B.; Rakshith, D.; Akash, R.; Hegde, V.V. An approach to detect fileless malware and defend its evasive mechanisms. In Proceedings of the 2018 3rd International Conference on Computational Systems and Information Technology for Sustainable Solutions (CSITSS), Bengaluru, India, 20–22 December 2018; pp. 234–239. [Google Scholar] [CrossRef]
- Case, A.; Richard, G.G., III. Memory forensics: The path forward. Digit. Investig. 2016, 20, 23–33. [Google Scholar] [CrossRef]
- Vömel, S.; Freiling, F.C. Correctness, atomicity, and integrity: Defining criteria for forensically-sound memory acquisition. Digit. Investig. 2012, 9, 125–137. [Google Scholar] [CrossRef]
- Pagani, F.; Fedorov, O.; Balzarotti, D. Introducing the Temporal Dimension to Memory Forensics. ACM Trans. Priv. Secur. 2019, 22, 8. [Google Scholar] [CrossRef]
- Aljaedi, A.; Lindskog, D.; Zavarsky, P.; Ruhl, R.; Almari, F. Comparative Analysis of Volatile Memory Forensics: Live Response vs. Memory Imaging. In Proceedings of the 2011 IEEE Third International Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third International Conference on Social Computing, Boston, MA, USA, 9–11 October 2011; pp. 1253–1258. [Google Scholar] [CrossRef]
- Stüttgen, J.; Cohen, M. Anti-forensic resilient memory acquisition. Digit. Investig. 2013, 10, S105–S115. [Google Scholar] [CrossRef]
- Sylve, J. Lime-linux memory extractor. In Proceedings of the 7th ShmooCon Conference, Washington, DC, USA; 2012. [Google Scholar]
- Russinovich, M.; Richards, A. ProcDump v10.11. 2022. Available online: https://docs.microsoft.com/en-us/sysinternals/downloads/procdump (accessed on 12 July 2022).
- Safitri, C. A Study: Volatility Forensic on Hidden Files. Int. J. Sci. Res. 2013, 2, 71–75. [Google Scholar]
- Volatility. Available online: https://github.com/volatilityfoundation/volatility (accessed on 12 July 2022).
- GDB. Available online: https://www.sourceware.org/gdb/ (accessed on 12 July 2022).
- WinDbg. Available online: https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/ (accessed on 12 July 2022).
- Visual Studio. Available online: https://docs.microsoft.com/en-us/visualstudio/debugger/using-dump-files?view=vs-2022 (accessed on 12 July 2022).
- VMWare. Available online: https://www.vmware.com/ (accessed on 12 July 2022).
- LibVMI. Available online: https://github.com/libvmi/libvmi (accessed on 12 July 2022).
- Martignoni, L.; Fattori, A.; Paleari, R.; Cavallaro, L. Live and Trustworthy Forensic Analysis of Commodity Production Systems. In Recent Advances in Intrusion Detection; Jha, S., Sommer, R., Kreibich, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 297–316. [Google Scholar]
- Yu, M.; Qi, Z.; Lin, Q.; Zhong, X.; Li, B.; Guan, H. Vis: Virtualization enhanced live forensics acquisition for native system. Digit. Investig. 2012, 9, 22–33. [Google Scholar] [CrossRef]
- Cheng, Y.; Fu, X.; Du, X.; Luo, B.; Guizani, M. A lightweight live memory forensic approach based on hardware virtualization. Inf. Sci. 2017, 379, 23–41. [Google Scholar] [CrossRef]
- Oleksiuk, D. Building Reliable SMM Backdoor for UEFI Based Platforms. 2015. Available online: http://blog.cr4.sh/2015/07/building-reliable-smm-backdoor-for-uefi.html (accessed on 12 July 2022).
- PCILeech. Available online: https://github.com/ufrisk/pcileech (accessed on 12 July 2022).
- Inception. Available online: https://github.com/carmaa/inception (accessed on 12 July 2022).
- Cox, G.; Yan, Z.; Bhattacharjee, A.; Ganapathy, V. Secure, Consistent, and High-Performance Memory Snapshotting. In Proceedings of the CODASPY’18: Proceedings of the Eighth ACM Conference on Data and Application Security and Privacy, Tempe, AZ, USA, 19–21 March 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 236–247. [Google Scholar] [CrossRef]
- Besler, F.; Willems, C.; Hund, R. Countering innovative sandbox evasion techniques used by malware. In Proceedings of the 29th Annual FIRST Conference, San Juan, Puerto Rico, 11–16 June 2017. [Google Scholar]
- Rekall. Available online: https://github.com/google/rekall (accessed on 12 July 2022).
- Cellebrite Inspector. Available online: https://cellebrite.com/en/inspector/ (accessed on 12 July 2022).
- FireEye Redline. Available online: https://www.fireeye.com/services/freeware/redline.html (accessed on 12 July 2022).
- Magnet Axiom. Available online: https://www.magnetforensics.com/products/magnet-axiom/ (accessed on 12 July 2022).
- WindowsSCOPE. Available online: http://www.windowsscope.com/windowsscope-cyber-forensics/ (accessed on 12 July 2022).
- Volatility Foundation. Available online: https://www.volatilityfoundation.org/ (accessed on 12 July 2022).
- Volatility Community Plugins. Available online: https://github.com/volatilityfoundation/community (accessed on 12 July 2022).
- Case, A.; Das, A.K.; Park, S.J.; Ramanujam, J.R.; Richard, G.G. Gaslight: A comprehensive fuzzing architecture for memory forensics frameworks. Digit. Investig. 2017, 22, S86–S93. [Google Scholar] [CrossRef]
- Meyers, C.; Ikuesan, A.R.; Venter, H.S. Automated RAM analysis mechanism for windows operating system for digital investigation. In Proceedings of the 2017 IEEE Conference on Application, Information and Network Security (AINS), Miri, Sarawak, Malaysia, 13–14 November 2017; pp. 85–90. [Google Scholar] [CrossRef]
- Auty, M.; Case, A. Volatility 3 Public Beta: Insider’s Preview. In Proceedings of the OSDFCon 2019, Open Source Digital Forensics Conference, Herndon, VA, USA, 15–17 October 2019. [Google Scholar]
- Ligh, M.H.; Case, A.; Levy, J.; Walters, A. The Art of Memory Forensics: Detecting Malware and Threats in Windows, Linux, and Mac Memory; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Cohen, M. Forensic analysis of windows user space applications through heap allocations. In Proceedings of the 2015 IEEE Symposium on Computers and Communication (ISCC), Larnaca, Cyprus, 6–9 July 2015; pp. 237–244. [Google Scholar] [CrossRef]
- Available online: http://virustotal.github.io/yara/ (accessed on 12 July 2022).
- Cohen, M. Scanning memory with Yara. Digit. Investig. 2017, 20, 34–43. [Google Scholar] [CrossRef]
- Orgah, A.; Richard, G., III; Case, A. MemForC: Memory Forensics Corpus Creation for Malware Analysis. In Proceedings of the International Conference on Cyber Warfare and Security, Cookeville, TN, USA, 25–26 February 2021; pp. 249–256. [Google Scholar]
- Fowler, J.E. Compression of Virtual–Machine Memory in Dynamic Malware Analysis. J. Digit. Forensics Secur. Law 2017, 12, 9. [Google Scholar] [CrossRef]
- Brengel, M.; Rossow, C. MemScrimper: Time-and Space-Efficient Storage of Malware Sandbox Memory Dumps. In Proceedings of the International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment, Saclay, France, 28–29 June 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 24–45. [Google Scholar]
- Pendergrass, J.A.; Hull, N.; Clemens, J.; Helble, S.; Thober, M.; McGill, K.; Gregory, M.; Loscocco, P. Technical report: A toolkit for runtime detection of userspace implants. arXiv 2019, arXiv:1904.12896. [Google Scholar]
- Kruegel, C. Full system emulation: Achieving successful automated dynamic analysis of evasive malware. In Proceedings of the BlackHat USA Security Conference, Las Vegas, NV, USA, 2–7 August 2014; pp. 1–7. [Google Scholar]
- AnyRun. Available online: https://any.run/ (accessed on 12 July 2022).
- CrowdStrike Falcon. Available online: https://www.crowdstrike.com/products/threat-intelligence/falcon-sandbox-malware-analysis/ (accessed on 12 July 2022).
- FireEye. Available online: https://www.fireeye.com/ (accessed on 12 July 2022).
- Joe Security. Available online: https://www.joesecurity.org/ (accessed on 12 July 2022).
- Palo Alto Wildfire. Available online: https://www.paloaltonetworks.com/products/secure-the-network/wildfire/ (accessed on 12 July 2022).
- VirusTotal. Available online: https://www.virustotal.com/gui/ (accessed on 12 July 2022).
- Cuckoo Sandbox. Available online: https://cuckoosandbox.org/ (accessed on 12 July 2022).
- Drakvuf. Available online: https://drakvuf-sandbox.readthedocs.io/en/latest/ (accessed on 12 July 2022).
- Sandboxie. Available online: https://github.com/sandboxie (accessed on 12 July 2022).
- FireEye SpeakEasy. Available online: https://github.com/fireeye/speakeasy (accessed on 12 July 2022).
- Murthaja, M.; Sahayanathan, B.; Munasinghe, A.; Uthayakumar, D.; Rupasinghe, L.; Senarathne, A. An Automated Tool for Memory Forensics. In Proceedings of the 2019 International Conference on Advancements in Computing (ICAC), Malabe, Sri Lanka, 5–6 December 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Mohaisen, A.; Alrawi, O.; Mohaisen, M. AMAL: High-fidelity, behavior-based automated malware analysis and classification. Comput. Secur. 2015, 52, 251–266. [Google Scholar] [CrossRef]
- Tien, C.W.; Liao, J.W.; Chang, S.C.; Kuo, S.Y. Memory forensics using virtual machine introspection for Malware analysis. In Proceedings of the 2017 IEEE Conference on Dependable and Secure Computing, Taipei, Taiwan, 7–10 August 2017; pp. 518–519. [Google Scholar] [CrossRef]
- Afianian, A.; Niksefat, S.; Sadeghiyan, B.; Baptiste, D. Malware dynamic analysis evasion techniques: A survey. ACM Comput. Surv. (CSUR) 2019, 52, 126. [Google Scholar] [CrossRef] [Green Version]
- Yokoyama, A.; Ishii, K.; Tanabe, R.; Papa, Y.; Yoshioka, K.; Matsumoto, T.; Kasama, T.; Inoue, D.; Brengel, M.; Backes, M.; et al. Sandprint: Fingerprinting malware sandboxes to provide intelligence for sandbox evasion. In Proceedings of the International Symposium on Research in Attacks, Intrusions, and Defenses, Paris, France, 19–21 September 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 165–187. [Google Scholar] [CrossRef]
- Chailytko, A.; Skuratovich, S. Defeating sandbox evasion: How to increase the successful emulation rate in your virtual environment. In Proceedings of the ShmooCon 2017, Washington, DC, USA, 13–15 January 2017. [Google Scholar]
- El Merabet, H.; Hajraoui, A. A survey of malware detection techniques based on machine learning. Int. J. Adv. Comput. Sci. Appl. 2019, 10, 366–373. [Google Scholar] [CrossRef]
- Singh, J.; Singh, J. A survey on machine learning-based malware detection in executable files. J. Syst. Archit. 2020, 112, 101861. [Google Scholar] [CrossRef]
- Souri, A.; Hosseini, R. A state-of-the-art survey of malware detection approaches using data mining techniques. Hum.-Centric Comput. Inf. Sci. 2018, 8, 3. [Google Scholar] [CrossRef]
- Shaukat, K.; Luo, S.; Varadharajan, V.; Hameed, I.A.; Xu, M. A Survey on Machine Learning Techniques for Cyber Security in the Last Decade. IEEE Access 2020, 8, 222310–222354. [Google Scholar] [CrossRef]
- Aghaeikheirabady, M.; Farshchi, S.M.R.; Shirazi, H. A new approach to malware detection by comparative analysis of data structures in a memory image. In Proceedings of the 2014 International Congress on Technology, Communication and Knowledge (ICTCK), Mashhad, Iran, 26–27 November 2014; pp. 1–4. [Google Scholar]
- Arfeen, A.; Asim Khan, M.; Zafar, O.; Ahsan, U. Process based volatile memory forensics for ransomware detection. Concurr. Comput. Pract. Exp. 2022, 34, e6672. [Google Scholar] [CrossRef]
- Lashkari, A.H.; Li, B.; Carrier, T.L.; Kaur, G. VolMemLyzer: Volatile Memory Analyzer for Malware Classification using Feature Engineering. In Proceedings of the 2021 Reconciling Data Analytics, Automation, Privacy, and Security: A Big Data Challenge (RDAAPS), Hamilton, ON, Canada, 18–19 May 2021; pp. 1–8. [Google Scholar] [CrossRef]
- Xu, Z.; Ray, S.; Subramanyan, P.; Malik, S. Malware detection using machine learning based analysis of virtual memory access patterns. In Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE), Lausanne, Switzerland, 27–31 March 2017; pp. 169–174. [Google Scholar]
- Bozkir, A.S.; Tahillioglu, E.; Aydos, M.; Kara, I. Catch them alive: A malware detection approach through memory forensics, manifold learning and computer vision. Comput. Secur. 2021, 103, 102166. [Google Scholar] [CrossRef]
Tool Name | First Author | Year | Sandbox Analysis | Scanning Method | ML Method | Utilizes Volatility | Live Detection | Automated |
---|---|---|---|---|---|---|---|---|
Graziano | 2012 | x | x | |||||
YARA | 2013 | x | x | |||||
Aghaeikheirabady | 2014 | x | x | |||||
AMAL | Mohaisen | 2015 | x | x | x | |||
Tien | 2017 | x | x | x | ||||
Cohen | 2017 | x | x | x | ||||
Fowler | 2017 | x | x | |||||
Xu | 2017 | x | x | x | ||||
MemScrimper | Brengel | 2018 | x | x | ||||
Murthaja | 2019 | x | x | x | ||||
USIM Toolkit | Pendergrass | 2019 | x | x | ||||
SpeakEasy | 2020 | x | ||||||
Lashkari | 2021 | x | x | |||||
Bozkir | 2021 | x | x | x | ||||
Arfeen | 2022 | x | x | x |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nyholm, H.; Monteith, K.; Lyles, S.; Gallegos, M.; DeSantis, M.; Donaldson, J.; Taylor, C. The Evolution of Volatile Memory Forensics. J. Cybersecur. Priv. 2022, 2, 556-572. https://doi.org/10.3390/jcp2030028
Nyholm H, Monteith K, Lyles S, Gallegos M, DeSantis M, Donaldson J, Taylor C. The Evolution of Volatile Memory Forensics. Journal of Cybersecurity and Privacy. 2022; 2(3):556-572. https://doi.org/10.3390/jcp2030028
Chicago/Turabian StyleNyholm, Hannah, Kristine Monteith, Seth Lyles, Micaela Gallegos, Mark DeSantis, John Donaldson, and Claire Taylor. 2022. "The Evolution of Volatile Memory Forensics" Journal of Cybersecurity and Privacy 2, no. 3: 556-572. https://doi.org/10.3390/jcp2030028
APA StyleNyholm, H., Monteith, K., Lyles, S., Gallegos, M., DeSantis, M., Donaldson, J., & Taylor, C. (2022). The Evolution of Volatile Memory Forensics. Journal of Cybersecurity and Privacy, 2(3), 556-572. https://doi.org/10.3390/jcp2030028