Contactless Fingerprint Recognition Using Deep Learning—A Systematic Review
Abstract
:1. Introduction
2. Review Methodology
2.1. Research Questions
- (1)
- RQ1. How do different sensor systems capture finger images to ensure the acceptable quality of fingerprints? Research findings will help to investigate whether the capturing systems have any impact on the model architecture or the recognition performance.
- (2)
- RQ2. How does the classical machine-learning method preprocess the contactless finger images and prepare for recognition algorithms? Research findings explore the classical methods used for feature extraction, image segmentation, minutiae point extraction, image deblur, background noise removal, particular portion segmentation, and suitable feature extraction from finger images.
- (3)
- RQ3. How do deep neural networks replace the classical recognition models? The answer will explore the architecture of related deep neural networks and their performance improvement over traditional methods.
2.2. Source of Studies
2.3. Search Strategy
2.4. Review Outcome
3. Contactless Fingerprint Capturing Methods
3.1. 2D Contactless Fingerprint Capturing Methods
3.2. 3D Contactless Fingerprint Capturing Methods
4. Classical Method to Extract Features from Contactless Fingerprints
5. Analyzing the Deep Neural Networks Methods Proposed for the Contactless Fingerprint Recognition Systems
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maltoni, D.; Maio, D.; Jain, A.K.; Prabhakar, S. Synthetic fingerprint generation. In Handbook of Fingerprint Recognition; Springer: London, UK, 2009; pp. 271–302. [Google Scholar]
- Choi, H.; Choi, K.; Kim, J. Mosaicing touchless and mirror-reflected fingerprint images. IEEE Trans. Inf. Forensics Secur. 2010, 5, 52–61. [Google Scholar] [CrossRef]
- Song, Y.; Lee, C.; Kim, J. A new scheme for touchless fingerprint recognition system. In Proceedings of 2004 International Symposium on Intelligent Signal Processing and Communication Systems, ISPACS, Seoul, Korea, 18–19 November 2004. [Google Scholar]
- Kumar, A. Introduction to trends in fingerprint identification. In Contactless 3D Fingerprint Identification; Springer: Berlin/Heidelberg, Germany, 2018; pp. 1–15. [Google Scholar]
- Oduah, U.I.; Kevin, I.F.; Oluwole, D.O.; Izunobi, J.U. Towards a high-precision contactless fingerprint scanner for biometric authentication. Array 2021, 11, 100083. [Google Scholar] [CrossRef] [PubMed]
- Stanton, B.C.; Stanton, B.C.; Theofanos, M.F.; Furman, S.M.; Grother, P.J. Usability Testing of a Contactless Fingerprint Device: Part 2; US Department of Commerce, National Institute of Standards and Technology: Gaithersburg, MD, USA, 2016. [Google Scholar]
- Raghavendra, R.; Busch, C.; Yang, B. Scaling-robust fingerprint verification with smartphone camera in real-life scenarios. In Proceedings of the 2013 IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems (BTAS), Arlington, VA, USA, 29 September–2 October 2013. [Google Scholar]
- Mil’shtein, S.; Paradise, M.; Bustos, P.; Baier, M.; Foret, S.; Kunnil, V.O.; Northrup, J. Contactless challenges. Biom. Technol. Today 2011, 2011, 10–11. [Google Scholar] [CrossRef]
- Kumar, A.; Zhou, Y. Contactless fingerprint identification using level zero features. In Proceedings of the IEEE CVPR 2011 Workshops, Colorado Springs, CO, USA, 20–25 June 2011. [Google Scholar]
- Priesnitz, J.; Rathgeb, C.; Buchmann, N.; Busch, C.; Margraf, M. An overview of touchless 2D fingerprint recognition. EURASIP J. Image Video Process. 2021, 2021, 1–28. [Google Scholar] [CrossRef]
- Noh, D.; Choi, H.; Kim, J. Touchless sensor capturing five fingerprint images by one rotating camera. Opt. Eng. 2011, 50, 113202. [Google Scholar] [CrossRef]
- Lin, C.; Kumar, A. Matching contactless and contact-based conventional fingerprint images for biometrics identification. IEEE Trans. Image Process. 2018, 27, 2008–2021. [Google Scholar] [CrossRef]
- Wang, Y.; Hassebrook, L.G.; Lau, D.L. Data acquisition and processing of 3-D fingerprints. IEEE Trans. Inf. Forensics Secur. 2010, 5, 750–760. [Google Scholar] [CrossRef]
- Tang, Y.; Jiang, L.; Hou, Y.; Wang, R. Contactless fingerprint image enhancement algorithm based on Hessian matrix and STFT. In Proceedings of the 2017 2nd International Conference on Multimedia and Image Processing (ICMIP), Wuhan, China, 17–19 March 2017. [Google Scholar]
- Dharavath, K.; Talukdar, F.A.; Laskar, R.H. Study on biometric authentication systems, challenges and future trends: A review. In Proceedings of the 2013 IEEE International Conference on Computational Intelligence and Computing Research, Enathi, India, 26–28 December 2013. [Google Scholar]
- Parziale, G.; Chen, Y. Advanced technologies for touchless fingerprint recognition. In Handbook of Remote Biometrics; Springer: London, UK, 2009; pp. 83–109. [Google Scholar]
- Libert, J.; Grantham, J.; Bandini, B.; Wood, S.; Garris, M.; Ko, K.; Byers, F.; Watson, C. Guidance for evaluating contactless fingerprint acquisition devices. NIST Spec. Publ. 2018, 500, 305. [Google Scholar]
- Derawi, M.O.; Yang, B.; Busch, C. Fingerprint recognition with embedded cameras on mobile phones. In Proceedings of the International Conference on Security and Privacy in Mobile Information and Communication Systems; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Lee, C.; Lee, S.; Kim, J.; Kim, S.J. Preprocessing of a fingerprint image captured with a mobile camera. In International Conference on Biometrics; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Su, Q.; Tian, J.; Chen, X.; Yang, X. A fingerprint authentication system based on mobile phone. In International Conference on Audio-and Video-Based Biometric Person Authentication; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Agarwal, A.; Singh, R.; Vatsa, M. Fingerprint sensor classification via mélange of handcrafted features. In Proceedings of the 2016 23rd International Conference on Pattern Recognition (ICPR), Cancun, Mexico, 4–8 December 2016. [Google Scholar]
- Zhao, Q.; Jain, A.; Abramovich, G. 3D to 2D fingerprints: Unrolling and distortion correction. In Proceedings of the 2011 International Joint Conference on Biometrics (IJCB), Washington, DC, USA, 11–13 October 2011. [Google Scholar]
- Drahansky, M.; Dolezel, M.; Urbanek, J.; Brezinova, E.; Kim, T.H. Influence of skin diseases on fingerprint recognition. J. Biomed. Biotechnol. 2012, 2012, 626148. [Google Scholar] [CrossRef]
- Pillai, A.; Mil’shtein, S. Can contactless fingerprints be compared to existing database? In Proceedings of the 2012 IEEE Conference on Technologies for Homeland Security (HST), Waltham, MA, USA, 13–15 November 2012.
- ISO/IEC 2382-37; Biometrics, I.I.J.S. 2017 Information Technology-Vocabulary-Part 37: Biometrics. International Organization for Standardization: Geneva, Switzerland, 2017.
- Yin, X.; Zhu, Y.; Hu, J. A Survey on 2D and 3D Contactless Fingerprint Biometrics: A Taxonomy, Review, and Future Directions. IEEE Open J. Comput. Soc. 2021, 2, 370–381. [Google Scholar] [CrossRef]
- Shafaei, S.; Inanc, T.; Hassebrook, L.G. A new approach to unwrap a 3-D fingerprint to a 2-D rolled equivalent fingerprint. In Proceedings of the 2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems, Washington, DC, USA, 28–30 September 2009. [Google Scholar]
- Affonso, C.; Rossi, A.L.D.; Vieira, F.H.A.; de Leon Ferreira, A.C.P. Deep learning for biological image classification. Expert Syst. Appl. 2017, 85, 114–122. [Google Scholar] [CrossRef] [Green Version]
- Cai, L.; Gao, J.; Zhao, D. A review of the application of deep learning in medical image classification and segmentation. Ann. Transl. Med. 2020, 8, 713. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Chen, L. Image recognition based on deep learning. In Proceedings of the 2015 IEEE Chinese Automation Congress (CAC), Wuhan, China, 27–29 November 2015. [Google Scholar]
- Pak, M.; Kim, S. A review of deep learning in image recognition. In Proceedings of the 2017 4th International Conference on Computer Applications and Information Processing Technology (CAIPT), Kuta Bali, Indonesia, 8–10 August 2017. [Google Scholar]
- Wu, R.; Yan, S.; Shan, Y.; Dang, Q.; Sun, G. Deep image: Scaling up image recognition. arXiv 2015, arXiv:1501.02876. [Google Scholar]
- Li, Y. Research and application of deep learning in image recognition. In Proceedings of the 2022 IEEE 2nd International Conference on Power, Electronics and Computer Applications (ICPECA), Shenyang, China, 21–23 January 2022. [Google Scholar]
- Jia, X. Image recognition method based on deep learning. In Proceedings of the 2017 29th Chinese Control and Decision Conference (CCDC), Chongqing, China, 28–30 May 2017. [Google Scholar]
- Cheng, F.; Zhang, H.; Fan, W.; Harris, B. Image recognition technology based on deep learning. Wirel. Per. Commun. 2018, 102, 1917–1933. [Google Scholar] [CrossRef]
- Coates, A.; Ng, A.Y. Learning feature representations with k-means. In Neural Networks: Tricks of the Trade; Springer: Berlin/Heidelberg, Germany, 2012; pp. 561–580. [Google Scholar]
- Zhong, G.; Wang, L.N.; Ling, X.; Dong, J. An overview on data representation learning: From traditional feature learning to recent deep learning. J. Financ. Data Sci. 2016, 2, 265–278. [Google Scholar] [CrossRef]
- Minaee, S.; Abdolrashidi, A.; Su, H.; Bennamoun, M.; Zhang, D. Biometrics recognition using deep learning: A survey. arXiv 2019, arXiv:1912.00271. [Google Scholar]
- Kumar, A. Contactless 3D Fingerprint Identification; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Jia, W.; Yi, W.J.; Saniie, J.; Oruklu, E. 3D image reconstruction and human body tracking using stereo vision and Kinect technology. In Proceedings of the 2012 IEEE International Conference on Electro/Information Technology, Indianapolis, IN, USA, 6–8 May 2012. [Google Scholar]
- Yin, X.; Zhu, Y.; Hu, J. 3D fingerprint recognition based on ridge-valley-guided 3D reconstruction and 3D topology polymer feature extraction. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 43, 1085–1091. [Google Scholar] [CrossRef]
- Song, P.; Yu, H.; Winkler, S. Vision-based 3D finger interactions for mixed reality games with physics simulation. In Proceedings of the 7th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and Its Applications in Industry, Singapore, 8–9 December 2008. [Google Scholar]
- Liu, F.; Zhang, D. 3D fingerprint reconstruction system using feature correspondences and prior estimated finger model. Pattern Recognit. 2014, 47, 178–193. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, D.; Shen, L. Study on novel curvature features for 3D fingerprint recognition. Neurocomputing 2015, 168, 599–608. [Google Scholar] [CrossRef]
- Nayar, S.K.; Gupta, M. Diffuse structured light. In Proceedings of the 2012 IEEE International Conference on Computational Photography (ICCP), Seattle, WA, USA, 28–29 April 2012. [Google Scholar]
- Zhang, L.; Curless, B.; Seitz, S.M. Rapid shape acquisition using color structured light and multi-pass dynamic programming. In Proceedings of the First International Symposium on 3D Data Processing Visualization and Transmission, Padova, Italy, 19–21 June 2002. [Google Scholar]
- Kumar, A.; Kwong, C. Towards contactless, low-cost and accurate 3D fingerprint identification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013. [Google Scholar]
- Parziale, G. Touchless fingerprinting technology. In Advances in Biometrics; Springer: London, UK, 2008; pp. 25–48. [Google Scholar]
- Carney, L.A.; Kane, J.; Mather, J.F.; Othman, A.; Simpson, A.G.; Tavanai, A.; Tyson, R.A.; Xue, Y. A multi-finger touchless fingerprinting system: Mobile fingerphoto and legacy database interoperability. In Proceedings of the 2017 4th International Conference on Biomedical and Bioinformatics Engineering, Seoul, Korea, 12–14 November 2017. [Google Scholar]
- Rilvan, M.A.; Chao, J.; Hossain, M.S. Capacitive swipe gesture based smartphone user authentication and identification. In Proceedings of the 2020 IEEE Conference on Cognitive and Computational Aspects of Situation Management (CogSIMA), Victoria, BC, Canada, 24–29 August 2020. [Google Scholar]
- Xie, W.; Song, Z.; Chung, R.C. Real-time three-dimensional fingerprint acquisition via a new photometric stereo means. Opt. Eng. 2013, 52, 103103. [Google Scholar] [CrossRef]
- Zhang, D.; Lu, G. 3D biometrics technologies and systems. In 3D Biometrics; Springer: New York, NY, USA, 2013; pp. 19–33. [Google Scholar]
- Jecić, S.; Drvar, N. The assessment of structured light and laser scanning methods in 3D shape measurements. In Proceedings of the 4th International Congress of Croatian Society of Mechanics, Bizovac, Croatia, 18–20 September 2003. [Google Scholar]
- Bell, T.; Li, B.; Zhang, S. Structured light techniques and applications. In Wiley Encyclopedia of Electrical and Electronics Engineering; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1999; pp. 1–24. [Google Scholar]
- Salih, Y.; Malik, A.S. Depth and geometry from a single 2D image using triangulation. In Proceedings of the 2012 IEEE International Conference on Multimedia and Expo Workshops, Melbourne, Australia, 9–13 July 2012. [Google Scholar]
- Labati, R.D.; Genovese, A.; Piuri, V.; Scotti, F. Toward unconstrained fingerprint recognition: A fully touchless 3-D system based on two views on the move. IEEE Trans. Syst. Man Cybern. Syst. 2015, 46, 202–219. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, D.; Song, C.; Lu, G. Touchless multiview fingerprint acquisition and mosaicking. IEEE Trans. Instrum. Meas. 2013, 62, 2492–2502. [Google Scholar] [CrossRef]
- Sero, D.; Garachon, I.; Hermens, E.; Liere, R.V.; Batenburg, K.J. The study of three-dimensional fingerprint recognition in cultural heritage: Trends and challenges. J. Comput. Cult. Herit. 2021, 14, 1–20. [Google Scholar] [CrossRef]
- Genovese, A.; Munoz, E.; Piuri, V.; Scotti, F.; Sforza, G. Towards touchless pore fingerprint biometrics: A neural approach. In Proceedings of the 2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, Canada, 24–29 July 2016. [Google Scholar]
- Piuri, V.; Scotti, F. Fingerprint biometrics via low-cost sensors and webcams. In Proceedings of the 2008 IEEE Second International Conference on Biometrics: Theory, Applications and Systems, Washington, DC, USA, 29 September–1 October 2008. [Google Scholar]
- Deb, D.; Chugh, T.; Engelsma, J.; Cao, K.; Nain, N.; Kendall, J.; Jain, A.K. Matching fingerphotos to slap fingerprint images. arXiv 2018, arXiv:1804.08122. [Google Scholar]
- Priesnitz, J.; Huesmann, R.; Rathgeb, C.; Buchmann, N.; Busch, C. Mobile contactless fingerprint recognition: Implementation, performance and usability aspects. Sensors 2022, 22, 792. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Jiang, J.; Cao, Y.; Xing, X.; Zhang, R. Preprocessing algorithm research of touchless fingerprint feature extraction and matching. In Chinese Conference on Pattern Recognition; Springer: Singapore, 2016. [Google Scholar]
- Liu, K.; Gong, D.; Meng, F.; Chen, H.; Wang, G.G. Gesture segmentation based on a two-phase estimation of distribution algorithm. Inf. Sci. 2017, 394, 88–105. [Google Scholar] [CrossRef]
- Bhattacharyya, D.; Ranjan, R.; Alisherov, F.; Choi, M. Biometric authentication: A review. Int. J. u- e-Serv. Sci. Technol. 2009, 2, 13–28. [Google Scholar]
- Khalil, M.S.; Wan, F.K. A review of fingerprint pre-processing using a mobile phone. In Proceedings of the 2012 International Conference on Wavelet Analysis and Pattern Recognition, Xi’an, China, 15–17 July 2012. [Google Scholar]
- Khalil, M.S.; Kurniawan, F.; Saleem, K. Authentication of fingerprint biometrics acquired using a cellphone camera: A review. Int. J. Wavelets Multiresolut. Inf. Process. 2013, 11, 1350033. [Google Scholar] [CrossRef]
- Kaur, A.; Kranthi, B. Comparison between YCbCr color space and CIELab color space for skin color segmentation. Int. J. Appl. Inf. Syst. 2012, 3, 30–33. [Google Scholar]
- Tassis, L.M.; de Souza, J.E.T.; Krohling, R.A. A deep learning approach combining instance and semantic segmentation to identify diseases and pests of coffee leaves from in-field images. Comput. Electron. Agric. 2021, 186, 106191. [Google Scholar] [CrossRef]
- Priesnitz, J.; Rathgeb, C.; Buchmann, N.; Busch, C. Touchless fingerprint sample quality: Prerequisites for the applicability of NFIQ2. 0. In Proceedings of the 2020 International Conference of the Biometrics Special Interest Group (BIOSIG), Darmstadt, Germany, 16–18 September 2020. [Google Scholar]
- Chinnappan, C.; Porkodi, R. Fingerprint Recognition Technology Using Deep Learning: A Review. SSRN Electron. J. 2021, 9, 4647–4663. [Google Scholar]
- Wu, Q.; Zhou, D.-X. Analysis of support vector machine classification. J. Comput. Anal. Appl. 2006, 8. [Google Scholar]
- Zhang, Y. Support vector machine classification algorithm and its application. In International Conference on Information Computing and Applications; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Gowri, D.S.; Amudha, T. A review on mammogram image enhancement techniques for breast cancer detection. In Proceedings of the 2014 International Conference on Intelligent Computing Applications, Coimbatore, India, 6–7 March 2014. [Google Scholar]
- Fenshia Singh, J.; Magudeeswaran, V. A machine learning approach for brain image enhancement and segmentation. Int. J. Imaging Syst. Technol. 2017, 27, 311–316. [Google Scholar] [CrossRef]
- Gragnaniello, D.; Poggi, G.; Sansone, C.; Verdoliva, L. Local contrast phase descriptor for fingerprint liveness detection. Pattern Recognit. 2015, 48, 1050–1058. [Google Scholar] [CrossRef]
- Hu, Z.; Li, D.; Isshiki, T.; Kunieda, H. Hybrid Minutiae Descriptor for Narrow Fingerprint Verification. IEICE Trans. Inf. Syst. 2017, 100, 546–555. [Google Scholar] [CrossRef]
- Svoboda, J. Deep Learning for 3D Hand Biometric Systems; Università della Svizzera Italiana: Lugano, Switzerland, 2020. [Google Scholar]
- Zhang, Z.; Liu, S.; Liu, M. A multi-task fully deep convolutional neural network for contactless fingerprint minutiae extraction. Pattern Recognit. 2021, 120, 108189. [Google Scholar] [CrossRef]
- Zhou, W.; Hu, J.; Petersen, I.; Wang, S.; Bennamoun, M. A benchmark 3D fingerprint database. In Proceedings of the 2014 11th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), Xiamen, China, 19–21 August 2014. [Google Scholar]
- Melekhov, I.; Ylioinas, J.; Kannala, J.; Rahtu, E. Image-based localization using hourglass networks. In Proceedings of the IEEE International Conference on Computer Vision Workshops, Venice, Italy, 22–29 October 2017. [Google Scholar]
- Jiang, L.; Zhao, T.; Bai, C.; Yong, A.; Wu, M. A direct fingerprint minutiae extraction approach based on convolutional neural networks. In Proceedings of the 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada, 24–29 July 2016. [Google Scholar]
- Lin, C.; Kumar, A. A CNN-based framework for comparison of contactless to contact-based fingerprints. IEEE Trans. Inf. Forensics Secur. 2018, 14, 662–676. [Google Scholar] [CrossRef]
- Yu, W.; Yang, K.; Bai, Y.; Xiao, T.; Yao, H.; Rui, Y. Visualizing and comparing AlexNet and VGG using deconvolutional layers. In Proceedings of the 33rd International Conference on Machine Learning, New York City, NY, USA, 19–24 June 2016. [Google Scholar]
- Ballester, P.; Araujo, R.M. On the performance of GoogLeNet and AlexNet applied to sketches. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, Pelotas, Brazil, 21 February 2016. [Google Scholar]
- Lin, C.; Kumar, A. Contactless and partial 3D fingerprint recognition using multi-view deep representation. Pattern Recognit. 2018, 83, 314–327. [Google Scholar] [CrossRef]
- Lin, C.; Kumar, A. Improving cross sensor interoperability for fingerprint identification. In Proceedings of the 2016 23rd International Conference on Pattern Recognition (ICPR), Cancun, Mexico, 4–8 December 2016. [Google Scholar]
- Watson, C.I.; Garris, M.D.; Tabassi, E.; Wilson, C.L.; McCabe, R.M.; Janet, S.; Ko, K. User’s Guide to NIST Biometric Image Software (NBIS); NIST: Gaithersburg, MD, USA, 2007. [Google Scholar]
- Tan, H.; Kumar, A. Minutiae attention network with reciprocal distance loss for contactless to contact-based fingerprint identification. IEEE Trans. Inf. Forensics Secur. 2021, 16, 3299–3311. [Google Scholar] [CrossRef]
- Sundararajan, K.; Woodard, D.L. Deep learning for biometrics: A survey. ACM Comput. Surv. CSUR 2018, 51, 1–34. [Google Scholar] [CrossRef]
Inclusion Criteria | Exclusion Criteria |
---|---|
Article published in peer-reviewed venues | Papers not written in English |
Article published since 2010 | Traditional contact-based fingerprint method |
Articles must address a certain combination of words i.e., deep learning + contactless fingerprint recognition | |
Automate + fingerprint identification, 3D + contactless identification, smartphone/mobile + capture, contactless + finger photo |
Capturing Device | Authors | Cost | Light Environment | Finger Type |
---|---|---|---|---|
Mobile Phone (2D) | Lee et al. [19] | Low cost | No extra illumination | Single Finger |
Digital Camera (2D) | Hiew et al. [59] | Low cost | Table lamp illumination | Single Finger |
Digital Camera (2D) | Genovese et al. [60] | Medium cost | Green Light illumination | Finger slap |
Webcam (2D) | Piuri et al. [61] | Low cost | Different illumination (white light, no light) | Single Finger |
Webcam | Kumar and Zhou [9] | Low cost | No illumination | Finger slap |
Smartphone (2D) | Derawi et al. [18] | Low cost | No illumination | Finger slap |
Smartphone (2D) | Canrey et al. [49] | Low cost | Screen guidance. If flash required (Y/N) | Finger slap |
Smartphone (2D) | Deb et al. [61] | Medium cost | 3 smartphones in different illumination | Thumb and index finger |
Smartphone (3D) | Xie et al. [51] | Medium cost | 2 cameras with depth information | Finger slap |
Challenge | Authors | Year | Approach |
---|---|---|---|
Finger Segmentation | Wang et al. [62] | 2017 | Hand color estimation in YCbCr |
Rotated pitched principal orientation estimation | Zaghetto et al. [9] | 2015 | Artificial neural network |
Low contrast | Wang et al. [62] | 2016 | CLAHE and extensions |
Distance to the sensor, ridge line frequency | Zaghetto et al [9] | 2017 | Frequency map, sensor-finger distance approximation |
Core/principal singular point detection | Labati et al. [64] | 2010 | Poincare-based ridge orientation analysis |
Deformation correction | Lin et al. [11] | 2018 | Robust thin-plate splines, deformation correction model |
Experiments | Equal Error Rate (ERR) | Rank-One Accuracy |
---|---|---|
Deformation correction model [87] on dataset A | 16.17% | 41.82% |
Minutiae matcher in NIST [88] on dataset A | 43.83% | 10.99% |
Proposed method on dataset A | 7.93% | 64.59% |
Deformation correction model [87] on dataset B | 21.60% | 38.90% |
Minutiae matcher in NIST [88] on dataset B | 38.01% | 24.92% |
Proposed method on dataset B | 7.11% | 58.87% |
Study | Database | Training Data | Purpose of Deep Learning | Input to Deep Neural network | Output from Deep Neural Network | Performance Metrics |
---|---|---|---|---|---|---|
[67] | Private | 275 images with 55 different people | Fingerprint Recognition | RGB to Gray scale images | Feature matching | Classification (Metric Accuracy) |
[78] | Public | 5760 images from 320 fingers | Minutiae Extraction | Gray scale images | Extracted minutiae images | AUC, EER |
[79] | Private + Public | 9000/6000/1320 images | Multiview fingerprint recognition | Gray scale images | Feature (Ridge, valley) representation | EER |
[80] | Public | 100 images | Minutiae Extraction | Gray scale images | Extracted Minutiae images | Classification (Metric Accuracy) |
[82] | Private + Public | 500 images | CNN based framework for Contactless fingerprint | HSV images | Similarity distance between two images | ROC curve |
[83] | Public | 9920 images | To correct fingerprint viewpoint | Gray scale images | Correct images | ROC and CMC curve |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chowdhury, A.M.M.; Imtiaz, M.H. Contactless Fingerprint Recognition Using Deep Learning—A Systematic Review. J. Cybersecur. Priv. 2022, 2, 714-730. https://doi.org/10.3390/jcp2030036
Chowdhury AMM, Imtiaz MH. Contactless Fingerprint Recognition Using Deep Learning—A Systematic Review. Journal of Cybersecurity and Privacy. 2022; 2(3):714-730. https://doi.org/10.3390/jcp2030036
Chicago/Turabian StyleChowdhury, A M Mahmud, and Masudul Haider Imtiaz. 2022. "Contactless Fingerprint Recognition Using Deep Learning—A Systematic Review" Journal of Cybersecurity and Privacy 2, no. 3: 714-730. https://doi.org/10.3390/jcp2030036
APA StyleChowdhury, A. M. M., & Imtiaz, M. H. (2022). Contactless Fingerprint Recognition Using Deep Learning—A Systematic Review. Journal of Cybersecurity and Privacy, 2(3), 714-730. https://doi.org/10.3390/jcp2030036