On the Non-Local Surface Plasmons’ Contribution to the Casimir Force between Graphene Sheets
Abstract
:1. Introduction
2. Theoretical Framework and Results
2.1. Graphene Response
2.2. Lifshitz Formalism
2.3. Intrinsic Graphene
3. Discussion
3.1. Effects of Doping and Loss
3.2. Non-Local Plasmons
3.3. Contributions to the Forces
3.4. Dirac Cone Approximation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Milonni, P.; Shih, M. Casimir forces. Contemp. Phys. 1992, 33, 313–322. [Google Scholar] [CrossRef]
- Lamoreaux, S. The Casimir force: Background, experiments, and applications. Rep. Prog. Phys. 2005, 68, 201–236. [Google Scholar] [CrossRef]
- Capasso, F.; Munday, J.N.; Iannuzzi, D.; Chan, H.B. Casimir forces and quantum electrodynamical torques: Physics and nanomechanics. IEEE J. Sel. Top. Quantum Electron. 2007, 13, 400–414. [Google Scholar] [CrossRef]
- Dellieu, L.; Deparis, O.; Muller, J.; Sarrazin, M. Quantum Vacuum Photon Modes and Superhydrophobicity. Phys. Rev. Lett. 2015, 114, 024501. [Google Scholar] [CrossRef] [PubMed]
- Kardar, M.; Golestanian, R. The “friction” of vacuum, and other fluctuation-induced forces. Rev. Mod. Phys. 1999, 71, 1233–1245. [Google Scholar] [CrossRef] [Green Version]
- Levin, M.; McCauley, A.P.; Rodriguez, A.W.; Reid, M.T.H.; Johnson, S.G. Casimir Repulsion between Metallic Objects in Vacuum. Phys. Rev. Lett. 2010, 105, 090403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henkel, C.; Joulain, K.; Mulet, J.P.; Greffet, J.J. Coupled surface polaritons and the Casimir force. Phys. Rev. A 2004, 69, 023808. [Google Scholar] [CrossRef] [Green Version]
- Pirozhenko, I.; Lambrecht, A. Repulsive Casimir forces and the role of surface modes. Phys. Rev. A 2009, 80, 042510. [Google Scholar] [CrossRef]
- Rodriguez, A.W.; Capasso, F.; Johnson, S.G. The Casimir effect in microstructured geometries. Nat. Photonics 2011, 5, 211–221. [Google Scholar] [CrossRef]
- Rodriguez, A.W.; Hui, P.C.; Woolf, D.P.; Johnson, S.G.; Lončar, M.; Capasso, F. Classical and fluctuation- induced electromagnetic interactions in micron-scale systems: Designer bonding, antibonding, and Casimir forces. Ann. Phys. (Berl.) 2015, 527, 45–80. [Google Scholar] [CrossRef] [Green Version]
- Esquivel, R.; Villarreal, C.; Mochán, W.L. Exact surface impedance formulation of the Casimir force: Application to spatially dispersive metals. Phys. Rev. A 2003, 68, 052103. [Google Scholar] [CrossRef] [Green Version]
- Esquivel, R.; Svetovoy, V.B. Correction to the Casimir force due to the anomalous skin effect. Phys. Rev. A 2004, 69, 062102. [Google Scholar] [CrossRef] [Green Version]
- Sernelius, B.E. Effects of spatial dispersion on electromagnetic surface modes and on modes associated with a gap between two half spaces. Phys. Rev. B 2005, 71, 235114. [Google Scholar] [CrossRef]
- Sernelius, B.E. Retarded interactions in graphene systems. Phys. Rev. B 2012, 85, 195427. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Zhao, R.; Pendry, J.B. van der Waals interactions at the nanoscale: The effects of nonlocality. Proc. Natl. Acad. Sci. USA 2014, 111, 18422–18427. [Google Scholar] [CrossRef] [Green Version]
- Drosdoff, D.; Phan, A.; Woods, L.; Bondarev, I.; Dobson, J. Effects of spatial dispersion on the Casimir force between graphene sheets. Eur. Phys. J. B 2012, 85, 365. [Google Scholar] [CrossRef] [Green Version]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef]
- Alonso-González, P.; Nikitin, A.Y.; Golmar, F.; Centeno, A.; Pesquera, A.; Vélez, S.; Chen, J.; Navickaite, G.; Koppens, F.; Zurutuza, A.; et al. Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns. Science 2014, 344, 1369–1373. [Google Scholar] [CrossRef]
- Francescato, Y.; Giannini, V.; Yang, J.; Huang, M.; Maier, S.A. Graphene Sandwiches as a Platform for Broadband Molecular Spectroscopy. ACS Photonics 2014, 1, 437–443. [Google Scholar] [CrossRef] [Green Version]
- Gilbertson, A.M.A.; Francescato, Y.; Roschuk, T.; Shautsova, V.; Chen, Y.; Sidiropoulos, T.T.P.H.; Hong, M.; Giannini, V.; Maier, S.A.S.; Cohen, L.L.F.; et al. Plasmon-induced optical anisotropy in hybrid graphene-metal nanoparticle systems. Nano Lett. 2015, 15, 3458–3464. [Google Scholar] [CrossRef]
- Li, K.; Fitzgerald, J.M.; Xiao, X.; Caldwell, J.D.J.; Zhang, C.; Maier, S.A.S.; Li, X.; Giannini, V. Graphene Plasmon Cavities Made with Silicon Carbide. ACS Omega 2017, 2, 3640–3646. [Google Scholar] [CrossRef]
- Lundeberg, M.B.; Gao, Y.; Asgari, R.; Tan, C.; Van Duppen, B.; Autore, M.; Alonso-González, P.; Woessner, A.; Watanabe, K.; Taniguchi, T.; et al. Tuning quantum nonlocal effects in graphene plasmonics. Science 2017, 357, 187–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, X.; Li, X.; Caldwell, J.D.J.; Maier, S.A.S.; Giannini, V. Theoretical analysis of graphene plasmon cavities. Appl. Mater. Today 2018, 12, 283–293. [Google Scholar] [CrossRef]
- Galiffi, E.; Pendry, J.; Arroyo-Huidobro, P. Singular graphene metasurfaces. EPJ Appl. Metamater. 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Koppens, F.H.L.; Chang, D.E.; García de Abajo, F.J. Graphene Plasmonics: A Platform for Strong Light-Matter Interactions. Nano Lett. 2011, 11, 3370–3377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, F.; Zhang, Y.; Tian, C.; Girit, C.; Zettl, A.; Crommie, M.; Shen, Y.R. Gate-variable optical transitions in graphene. Science 2008, 320, 206–209. [Google Scholar] [CrossRef]
- Pyatkovskiy, P.K. Dynamical polarization, screening, and plasmons in gapped graphene. J. Phys. Condens. Matter 2009, 21, 025506. [Google Scholar] [CrossRef] [Green Version]
- Mermin, N.D. Lindhard Dielectric Function in the Relaxation-Time Approximation. Phys. Rev. B 1970, 1, 2362–2363. [Google Scholar] [CrossRef]
- Lifshitz, E.M. The theory of molecular attractive forces between solids. Sov. Phys. JETP 1956, 2, 73–83. Available online: http://www.jetp.ac.ru/cgi-bin/e/index/e/2/1/p73?a=list; Reprinted in Perspectives in Theoretical Physics: The Collected Papers of E.M. Lifshitz; Pitaevskii, L.P., Ed.; Pergamon Press Plc: Oxford, UK, 1992; pp. 329–350. [CrossRef]
- Dzyaloshinskii, I.E.; Lifshitz, E.M.; Pitaevskii, L.P. Van der Waals forces in liquid films. Sov. Phys. JETP 1960, 10, 161–170. Available online: http://www.jetp.ac.ru/cgi-bin/e/index/e/10/1/p161?a=list; Reprinted in Perspectives in Theoretical Physics: The Collected Papers of E.M. Lifshitz; Pitaevskii, L.P., Ed.; Pergamon Press Plc: Oxford, UK, 1992; pp. 425–442. [CrossRef]
- Dzyaloshinskii, I.E.; Lifshitz, E.M.; Pitaevskii, L.P. General Theory of Van der Waals’ Forces. Sov. Phys. Uspekhi 1961, 4, 153–176. [Google Scholar] [CrossRef]
- Klimchitskaya, G.L.; Mohideen, U.; Mostepanenko, V.M. The Casimir force between real materials: Experiment and theory. Rev. Mod. Phys. 2009, 81, 1827–1885. [Google Scholar] [CrossRef] [Green Version]
- Drosdoff, D.; Woods, L.M. Casimir forces and graphene sheets. Phys. Rev. B 2010, 82, 155459. [Google Scholar] [CrossRef] [Green Version]
- Klimchitskaya, G.L.; Mostepanenko, V.M.; Sernelius, B.E. Two approaches for describing the Casimir interaction in graphene: Density-density correlation function versus polarization tensor. Phys. Rev. B 2014, 89, 125407. [Google Scholar] [CrossRef] [Green Version]
- Castro Neto, A.H.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162. [Google Scholar] [CrossRef] [Green Version]
- Sernelius, B.E. Casimir interactions in graphene systems. Europhys. Lett. 2011, 95, 57003. [Google Scholar] [CrossRef] [Green Version]
- Mak, K.F.; Shan, J.; Heinz, T.F. Seeing Many-Body Effects in Single- and Few-Layer Graphene: Observation of Two-Dimensional Saddle-Point Excitons. Phys. Rev. Lett. 2011, 106, 046401. [Google Scholar] [CrossRef]
- Intravaia, F.; Lambrecht, A. Surface Plasmon Modes and the Casimir Energy. Phys. Rev. Lett. 2005, 94, 110404. [Google Scholar] [CrossRef] [Green Version]
- Giannini, V.; Zhang, Y.; Forcales, M.; Rivas, J.G. Long-range surface polaritons in ultra-thin films of silicon. Opt. Express 2008, 16, 19674–19685. [Google Scholar] [CrossRef] [Green Version]
- Stauber, T.; Schliemann, J.; Peres, N.M.R. Dynamical polarizability of graphene beyond the Dirac cone approximation. Phys. Rev. B 2010, 81, 085409. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Francescato, Y.; Pocock, S.R.; Giannini, V. On the Non-Local Surface Plasmons’ Contribution to the Casimir Force between Graphene Sheets. Physics 2020, 2, 22-31. https://doi.org/10.3390/physics2010003
Francescato Y, Pocock SR, Giannini V. On the Non-Local Surface Plasmons’ Contribution to the Casimir Force between Graphene Sheets. Physics. 2020; 2(1):22-31. https://doi.org/10.3390/physics2010003
Chicago/Turabian StyleFrancescato, Yan, Simon R. Pocock, and Vincenzo Giannini. 2020. "On the Non-Local Surface Plasmons’ Contribution to the Casimir Force between Graphene Sheets" Physics 2, no. 1: 22-31. https://doi.org/10.3390/physics2010003
APA StyleFrancescato, Y., Pocock, S. R., & Giannini, V. (2020). On the Non-Local Surface Plasmons’ Contribution to the Casimir Force between Graphene Sheets. Physics, 2(1), 22-31. https://doi.org/10.3390/physics2010003