Highly Active Carbon-Based Electrocatalysts for Dye-Sensitized Solar Cells: A Brief Review
Abstract
:1. Introduction
2. Synthesis of Graphene
3. Graphene-Based Counter Electrodes for DSSCs
4. Conclusions and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- O’Regan, B.; Gratzel, M. The Study of Fast Processes and Transient Species by Electron Pulse Radiolysis. Nature 1991, 353, 737–740. [Google Scholar] [CrossRef]
- Kavan, L. Electrochemistry and Dye-Sensitized Solar Cells. Curr. Opin. Electrochem. 2017, 2, 88–96. [Google Scholar] [CrossRef]
- Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Dye-Sensitized Solar Cells. Chem. Rev. 2010, 110, 6595–6663. [Google Scholar] [CrossRef]
- Sharma, K.; Sharma, V.; Sharma, S.S. Dye-Sensitized Solar Cells: Fundamentals and Current Status. Nanoscale Res. Lett. 2018, 13, 381. [Google Scholar] [CrossRef] [PubMed]
- Kavan, L.; Krysova, H.; Janda, P.; Tarabkova, H.; Saygili, Y.; Freitag, M.; Zakeeruddin, S.M.; Hagfeldt, A.; Grätzel, M. Novel Highly Active Pt/Graphene Catalyst for Cathodes of Cu(II/I)-Mediated Dye-Sensitized Solar Cells. Electrochim. Acta 2017, 251, 167–175. [Google Scholar] [CrossRef] [Green Version]
- Olsen, E.; Hagen, G.; Eric Lindquist, S. Dissolution of Platinum in Methoxy Propionitrile Containing LiI/I2. Sol. Energy Mater. Sol. Cells 2000, 63, 267–273. [Google Scholar] [CrossRef]
- Mohanty, S.P.; More, V.; Bhargava, P. Effect of Aging Conditions on the Performance of Dip Coated Platinum Counter Electrode Based Dye Sensitized Solar Cells. RSC Adv. 2015, 5, 18647–18654. [Google Scholar] [CrossRef]
- Yen, Y.S.; Chou, H.H.; Chen, Y.C.; Hsu, C.Y.; Lin, J.T. Recent Developments in Molecule-Based Organic Materials for Dye-Sensitized Solar Cells. J. Mater. Chem. 2012, 22, 8734–8747. [Google Scholar] [CrossRef]
- Wan, J.; Fang, G.; Yin, H.; Liu, X.; Liu, D.; Zhao, M.; Ke, W.; Tao, H.; Tang, Z. Pt-Ni Alloy Nanoparticles as Superior Counter Electrodes for Dye-Sensitized Solar Cells: Experimental and Theoretical Understanding. Adv. Mater. 2014, 26, 8101–8106. [Google Scholar] [CrossRef]
- Li, G.R.; Wang, F.; Jiang, Q.W.; Gao, X.P.; Shen, P.W. Carbon Nanotubes with Titanium Nitride as a Low-Cost Counterelectrode Material for Dye-Sensitized Solar Cells. Angew. Chem. Int. Ed. 2010, 49, 3653–3656. [Google Scholar] [CrossRef]
- Ju, M.J.; Jeon, I.Y.; Kim, J.C.; Lim, K.; Choi, H.J.; Jung, S.M.; Choi, I.T.; Eom, Y.K.; Kwon, Y.J.; Ko, J.; et al. Graphene Nanoplatelets Doped with N at Its Edges as Metal-Free Cathodes for Organic Dye-Sensitized Solar Cells. Adv. Mater. 2014, 26, 3055–3062. [Google Scholar] [CrossRef]
- Trevisan, R.; Döbbelin, M.; Boix, P.P.; Barea, E.M.; Tena-Zaera, R.; Mora-Seró, I.; Bisquert, J. PEDOT Nanotube Arrays as High Performing Counter Electrodes for Dye Sensitized Solar Cells. Study of the Interactions among Electrolytes and Counter Electrodes. Adv. Energy Mater. 2011, 1, 781–784. [Google Scholar] [CrossRef]
- Hou, W.; Xiao, Y.; Han, G.; Fu, D.; Wu, R. Serrated, Flexible and Ultrathin Polyaniline Nanoribbons: An Efficient Counter Electrode for the Dye-Sensitized Solar Cell. J. Power Sources 2016, 322, 155–162. [Google Scholar] [CrossRef]
- Wang, L.; Shi, Y.; Zhang, H.; Bai, X.; Wang, Y.; Ma, T. Iron Oxide Nanostructures as Highly Efficient Heterogeneous Catalysts for Mesoscopic Photovoltaics. J. Mater. Chem. A 2014, 2, 15279–15283. [Google Scholar] [CrossRef]
- Guo, J.; Shi, Y.; Zhu, C.; Wang, L.; Wang, N.; Ma, T. Cost-Effective and Morphology-Controllable Niobium Diselenides for Highly Efficient Counter Electrodes of Dye-Sensitized Solar Cells. J. Mater. Chem. A 2013, 1, 11874–11879. [Google Scholar] [CrossRef]
- Wu, M.; Lin, X.; Wang, Y.; Wang, L.; Guo, W.; Qi, D.; Peng, X.; Hagfeldt, A.; Grätzel, M.; Ma, T. Economical Pt-Free Catalysts for Counter Electrodes of Dye-Sensitized Solar Cells. J. Am. Chem. Soc. 2012, 134, 3419–3428. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Yang, D.; Yin, Z.; Yan, Q.; Zhang, H. Graphene and Graphene-Based Materials for Energy Storage Applications. Small 2014, 10, 3480–3498. [Google Scholar] [CrossRef]
- Roy-Mayhew, J.D.; Bozym, D.J.; Punckt, C.; Aksay, I.A. Functionalized Graphene as a Catalytic Counter Electrode in Dye-Sensitized Solar Cells. ACS Nano 2010, 4, 6203–6211. [Google Scholar] [CrossRef] [Green Version]
- Li, G.R.; Wang, F.; Song, J.; Xiong, F.Y.; Gao, X.P. TiN-Conductive Carbon Black Composite as Counter Electrode for Dye-Sensitized Solar Cells. Electrochim. Acta 2012, 65, 216–220. [Google Scholar] [CrossRef]
- He, B.; Meng, X.; Tang, Q.; Li, P.; Yuan, S.; Yang, P. Low-Cost CoPt Alloy Counter Electrodes for Efficient Dye-Sensitized Solar Cells. J. Power Sources 2014, 260, 180–185. [Google Scholar] [CrossRef]
- Wu, M.; Lin, X.; Wang, T.; Qiu, J.; Ma, T. Low-Cost Dye-Sensitized Solar Cell Based on Nine Kinds of Carbon Counter Electrodes. Energy Environ. Sci. 2011, 4, 2308–2315. [Google Scholar] [CrossRef]
- Roy-Mayhew, J.D.; Aksay, I.A. Graphene Materials and Their Use in Dye-Sensitized Solar Cells. Chem. Rev. 2014, 114, 6323–6348. [Google Scholar] [CrossRef] [PubMed]
- Kavan, L.; Yum, J.H.; Graetzel, M. Graphene-Based Cathodes for Liquid-Junction Dye Sensitized Solar Cells: Electrocatalytic and Mass Transport Effects. Electrochim. Acta 2014, 128, 349–359. [Google Scholar] [CrossRef]
- Li, G.R.; Gao, X.P. Low-Cost Counter-Electrode Materials for Dye-Sensitized and Perovskite Solar Cells. Adv. Mater. 2020, 32, 1–20. [Google Scholar] [CrossRef]
- Lim, S.P.; Pandikumar, A.; Lim, Y.S.; Huang, N.M.; Lim, H.N. In-Situ Electrochemically Deposited Polypyrrole Nanoparticles Incorporated Reduced Graphene Oxide as an Efficient Counter Electrode for Platinum-Free Dye-Sensitized Solar Cells. Sci. Rep. 2014, 4, 13–15. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Min, H.; Xu, F.; Tong, L.; Chen, J.; Zhu, C.; Sun, L. All Electrochemical Fabrication of MoS2/Graphene Counter Electrodes for Efficient Dye-Sensitized Solar Cells. RSC Adv. 2016, 6, 34546–34552. [Google Scholar] [CrossRef]
- Li, S.; Luo, Y.; Lv, W.; Yu, W.; Wu, S.; Hou, P.; Yang, Q.; Meng, Q.; Liu, C.; Cheng, H.M. Vertically Aligned Carbon Nanotubes Grown on Graphene Paper as Electrodes in Lithium-Ion Batteries and Dye-Sensitized Solar Cells. Adv. Energy Mater. 2011, 1, 486–490. [Google Scholar] [CrossRef]
- Choi, H.; Kim, H.; Hwang, S.; Choi, W.; Jeon, M. Dye-Sensitized Solar Cells Using Graphene-Based Carbon Nano Composite as Counter Electrode. Sol. Energy Mater. Sol. Cells 2011, 95, 323–325. [Google Scholar] [CrossRef]
- Sun, W.; Peng, T.; Liu, Y.; Huang, N.; Guo, S.; Zhao, X. Ordered Mesoporous Carbon-Decorated Reduced Graphene Oxide as Efficient Counter Electrode for Dye-Sensitized Solar Cells. Carbon N. Y. 2014, 77, 18–24. [Google Scholar] [CrossRef]
- Shao, L.L.; Chen, M.; Ren, T.Z.; Yuan, Z.Y. Ordered Mesoporous Carbon/Graphene Nano-Sheets Composites as Counter Electrodes in Dye-Sensitized Solar Cells. J. Power Sources 2015, 274, 791–798. [Google Scholar] [CrossRef]
- Kim, H.; Choi, H.; Hwang, S.; Kim, Y.; Jeon, M. Fabrication and Characterization of Carbon-Based Counter Electrodes Prepared by Electrophoretic Deposition for Dye-Sensitized Solar Cells. Nanoscale Res. Lett. 2012, 7, 2–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, G.; Pan, L.; Lu, T.; Xu, T.; Sun, Z. Electrophoretic Deposition of Reduced Graphene-Carbon Nanotubes Composite Films as Counter Electrodes of Dye-Sensitized Solar Cells. J. Mater. Chem. 2011, 21, 14869–14875. [Google Scholar] [CrossRef]
- Yu, K.; Wang, P.; Lu, G.; Chen, K.H.; Bo, Z.; Chen, J. Patterning Vertically Oriented Graphene Sheets for Nanodevice Applications. J. Phys. Chem. Lett. 2011, 2, 537–542. [Google Scholar] [CrossRef]
- Yang, K.; Wang, J.; Chen, B. Facile Fabrication of Stable Monolayer and Few-Layer Graphene Nanosheets as Superior Sorbents for Persistent Aromatic Pollutant Management in Water. J. Mater. Chem. A 2014, 2, 18219–18224. [Google Scholar] [CrossRef]
- Pham, H.D.; Pham, V.H.; Cuong, T.V.; Nguyen-Phan, T.D.; Chung, J.S.; Shin, E.W.; Kim, S. Synthesis of the Chemically Converted Graphene Xerogel with Superior Electrical Conductivity. Chem. Commun. 2011, 47, 9672–9674. [Google Scholar] [CrossRef]
- Xue, Y.; Ding, Y.; Niu, J.; Xia, Z.; Roy, A.; Chen, H.; Qu, J.; Wang, Z.L.; Dai, L. Rationally Designed Graphene-Nanotube 3D Architectures with a Seamless Nodal Junction for Efficient Energy Conversion and Storage. Sci. Adv. 2015, 1, e1400198. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Sudhagar, P.; Verma, V.; Song, D.; Ito, E.; Lee, S.Y.; Kang, Y.S.; Choi, W. Amplifying Charge-Transfer Characteristics of Graphene for Triiodide Reduction in Dye-Sensitized Solar Cells. Adv. Funct. Mater. 2011, 21, 3729–3736. [Google Scholar] [CrossRef]
- Zhang, D.W.; Li, X.D.; Li, H.B.; Chen, S.; Sun, Z.; Yin, X.J.; Huang, S.M. Graphene-Based Counter Electrode for Dye-Sensitized Solar Cells. Carbon N. Y. 2011, 49, 5382–5388. [Google Scholar] [CrossRef]
- Roy-Mayhew, J.D.; Boschloo, G.; Hagfeldt, A.; Aksay, I.A. Functionalized Graphene Sheets as a Versatile Replacement for Platinum in Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces 2012, 4, 2794–2800. [Google Scholar] [CrossRef]
- Luo, Q.; Hao, F.; Wang, S.; Shen, H.; Zhao, L.; Li, J.; Grätzel, M.; Lin, H. Highly Efficient Metal-Free Sulfur-Doped and Nitrogen and Sulfur Dual-Doped Reduced Graphene Oxide Counter Electrodes for Dye-Sensitized Solar Cells. J. Phys. Chem. C 2014, 118, 17010–17018. [Google Scholar] [CrossRef]
- Kavan, L.; Yum, J.H.; Nazeeruddin, M.K.; Grätzel, M. Graphene Nanoplatelet Cathode for Co(III)/(II) Mediated Dye-Sensitized Solar Cells. ACS Nano 2011, 5, 9171–9178. [Google Scholar] [CrossRef] [PubMed]
- Kavan, L.; Yum, J.H.; Grätzel, M. Graphene Nanoplatelets Outperforming Platinum as the Electrocatalyst in Co-Bipyridine-Mediated Dye-Sensitized Solar Cells. Nano Lett. 2011, 11, 5501–5506. [Google Scholar] [CrossRef] [PubMed]
- Kavan, L.; Yum, J.H.; Grätzel, M. Optically Transparent Cathode for Dye-Sensitized Solar Cells Based on Graphene Nanoplatelets. ACS Nano 2011, 5, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Ahn, H.J.; Yoon, J.C.; Jang, J.H. Three-Dimensional Nano-Foam of Few-Layer Graphene Grown by CVD for DSSC. Phys. Chem. Chem. Phys. 2012, 14, 7938–7943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.; Bai, H.; Lu, G.; Li, C.; Shi, G. Flexible Graphene Films via the Filtration of Water-Soluble Noncovalent Functionalized Graphene Sheets. J. Am. Chem. Soc. 2008, 130, 5856–5857. [Google Scholar] [CrossRef]
- Dou, Y.Y.; Li, G.R.; Song, J.; Gao, X.P. Nickel Phosphide-Embedded Graphene as Counter Electrode for Dye-Sensitized Solar Cells. Phys. Chem. Chem. Phys. 2012, 14, 1339–1342. [Google Scholar] [CrossRef]
- Cruz, R.; Pacheco Tanaka, D.A.; Mendes, A. Reduced Graphene Oxide Films as Transparent Counter-Electrodes for Dye-Sensitized Solar Cells. Sol. Energy 2012, 86, 716–724. [Google Scholar] [CrossRef]
- Hsieh, C.T.; Yang, B.H.; Lin, J.Y. One- and Two-Dimensional Carbon Nanomaterials as Counter Electrodes for Dye-Sensitized Solar Cells. Carbon N. Y. 2011, 49, 3092–3097. [Google Scholar] [CrossRef]
- Gong, J.; Zhou, Z.; Sumathy, K.; Yang, H.; Qiao, Q. Activated Graphene Nanoplatelets as a Counter Electrode for Dye-Sensitized Solar Cells. J. Appl. Phys. 2016, 119, 135501. [Google Scholar] [CrossRef]
- Ju, M.J.; Jeon, I.Y.; Lim, K.; Kim, J.C.; Choi, H.J.; Choi, I.T.; Eom, Y.K.; Kwon, Y.J.; Ko, J.; Lee, J.J.; et al. Edge-Carboxylated Graphene Nanoplatelets as Oxygen-Rich Metal-Free Cathodes for Organic Dye-Sensitized Solar Cells. Energy Environ. Sci. 2014, 7, 1044–1052. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.M.; Jeon, I.Y.; Choi, I.T.; Kang, S.H.; Shin, S.H.; Jeong, H.Y.; Ju, M.J.; Baek, J.B.; Kim, H.K. Edge-Selectively Antimony-Doped Graphene Nanoplatelets as an Outstanding Counter Electrode with an Unusual Electrochemical Stability for Dye-Sensitized Solar Cells Employing Cobalt Electrolytes. J. Mater. Chem. A 2016, 4, 9029–9037. [Google Scholar] [CrossRef]
- Ju, M.J.; Jeon, I.Y.; Kim, H.M.; Choi, J., II; Jung, S.M.; Seo, J.M.; Choi, I.T.; Kang, S.H.; Kim, H.S.; Noh, M.J.; et al. Edge-Selenated Graphene Nanoplatelets as Durable Metal-Free Catalysts for Iodine Reduction Reaction in Dye-Sensitized Solar Cells. Sci. Adv. 2016, 2, e1501459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, W.; Xu, X.; Hou, L.; Ma, X.; Yang, F.; Wang, Y.; Li, Y. Insight into the Topological Defects and Dopants in Metal-Free Holey Graphene for Triiodide Reduction in Dye-Sensitized Solar Cells. J. Mater. Chem. A 2017, 5, 5952–5960. [Google Scholar] [CrossRef]
- Tseng, C.-A.; Lee, C.-P.; Huang, Y.-J.; Pang, H.-W.; Ho, K.-C.; Chen, Y.-T. One-Step Synthesis of Graphene Hollow Nanoballs with Various Nitrogen-Doped States for Electrocatalysis in Dye-Sensitized Solar Cells. Mater. Today Energy 2018, 8, 15–21. [Google Scholar] [CrossRef]
- Yu, C.; Liu, Z.; Meng, X.; Lu, B.; Cui, D.; Qiu, J. Nitrogen and Phosphorus Dual-Doped Graphene as a Metal-Free High-Efficiency Electrocatalyst for Triiodide Reduction. Nanoscale 2016, 8, 17458–17464. [Google Scholar] [CrossRef]
- Liang, J.; Jiao, Y.; Jaroniec, M.; Qiao, S.Z. Sulfur and Nitrogen Dual-Doped Mesoporous Graphene Electrocatalyst for Oxygen Reduction with Synergistically Enhanced Performance. Angew. Chem. Int. Ed. Engl. 2012, 51, 11496–11500. [Google Scholar] [CrossRef]
- Chen, J.F.; Mao, Y.; Wang, H.F.; Hu, P. Theoretical Study of Heteroatom Doping in Tuning the Catalytic Activity of Graphene for Triiodide Reduction. ACS Catal. 2016, 6, 6804–6813. [Google Scholar] [CrossRef] [Green Version]
- Kannan, A.G.; Zhao, J.; Jo, S.G.; Kang, Y.S.; Kim, D.W. Nitrogen and Sulfur Co-Doped Graphene Counter Electrodes with Synergistically Enhanced Performance for Dye-Sensitized Solar Cells. J. Mater. Chem. A 2014, 2, 12232–12239. [Google Scholar] [CrossRef]
- Chang, Y.C.; Tseng, C.A.; Lee, C.P.; Ann, S.B.; Huang, Y.J.; Ho, K.C.; Chen, Y.T. N-and S-Codoped Graphene Hollow Nanoballs as an Efficient Pt-Free Electrocatalyst for Dye-Sensitized Solar Cells. J. Power Sources 2020, 449, 227470. [Google Scholar] [CrossRef]
Counter Electrodes | η (%) | VOC (mV) | JSC (mA cm−2) | FF | JIPCE (mA cm−2) |
---|---|---|---|---|---|
Bare CC | 0.48 ± 0.11 | 571 ± 2 | 4.33 ± 0.83 | 0.19 ± 0.01 | 4.14 |
GHBs/CC | 6.20 ± 0.06 | 697 ± 5 | 14.50 ± 0.27 | 0.61 ± 0.01 | 14.29 |
N-GHBs-P3/CC | 7.53 ± 0.06 | 703 ± 5 | 16.09 ± 0.18 | 0.67 ± 0.01 | 15.99 |
Sputtered Pt/CC | 7.70 ± 0.14 | 735 ± 13 | 15.87 ± 0.32 | 0.66 ± 0.01 | 15.77 |
Counter Electrodes | η (%) | VOC (mV) | JSC (mA cm−2) | FF | JIPCE (mA cm−2) |
---|---|---|---|---|---|
Bare CC | 0.41 | 570 | 3.80 | 0.19 | 3.67 |
GHBs/CC | 6.47 | 785 | 13.33 | 0.62 | 13.06 |
N-GHBs/CC | 7.48 | 776 | 14.44 | 0.67 | 14.07 |
S-GHBs/CC | 8.15 | 785 | 14.84 | 0.70 | 14.68 |
N,S-GHBs/CC | 9.02 | 798 | 15.71 | 0.72 | 15.56 |
Sputtered Pt/CC | 8.90 | 802 | 15.22 | 0.73 | 14.96 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tseng, C.-A.; Lee, C.-P. Highly Active Carbon-Based Electrocatalysts for Dye-Sensitized Solar Cells: A Brief Review. Physics 2020, 2, 412-424. https://doi.org/10.3390/physics2030023
Tseng C-A, Lee C-P. Highly Active Carbon-Based Electrocatalysts for Dye-Sensitized Solar Cells: A Brief Review. Physics. 2020; 2(3):412-424. https://doi.org/10.3390/physics2030023
Chicago/Turabian StyleTseng, Chi-Ang, and Chuan-Pei Lee. 2020. "Highly Active Carbon-Based Electrocatalysts for Dye-Sensitized Solar Cells: A Brief Review" Physics 2, no. 3: 412-424. https://doi.org/10.3390/physics2030023
APA StyleTseng, C. -A., & Lee, C. -P. (2020). Highly Active Carbon-Based Electrocatalysts for Dye-Sensitized Solar Cells: A Brief Review. Physics, 2(3), 412-424. https://doi.org/10.3390/physics2030023