Examination of Chaotic Structures in Semiconductor or Alloy Voltage Time-Series: A Complex Network Approach for the Case of TlInTe2
Abstract
:1. Introduction
2. Data and Methodology
2.1. Data
2.2. Complex Network Analysis of Time-Series: The Natural Visibility Graph Algorithm
2.3. Network Analysis
2.4. Community Detection Based on Modularity Optimization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Girard, P. Electrostatic force microscopy: Principles and some applications to semiconductors. Nanotechnology 2001, 12, 485. [Google Scholar] [CrossRef] [Green Version]
- Yu, P.Y.; Cardona, M. Fundamentals of Semiconductors. Physics and Materials Properties; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar] [CrossRef]
- McKelvey, J.P. Solid State and Semiconductor Physics; Harper & Row: Manhattan, NY, USA, 2018. [Google Scholar]
- Dugdale, J.S. The Electrical Properties of Metals and Alloys; Courier Dover Publications: Mineola, NY, USA, 2016. [Google Scholar]
- Peinke, J.; Parisi, J.; Rossler, O.E.; Stoop, R. Encounter with Chaos: Self-organized Hierarchical Complexity in Semiconductor Experiments; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Hanias, M.P.; Anagnostopoulos, A.N. Negative-differential-resistance effects in the TlGaTe2 ternary semiconductor. Phys. Rev. B 1993, 47, 4261. [Google Scholar] [CrossRef] [PubMed]
- Hanias, M.P.; Kalomiros, J.A.; Karakotsou, C.; Anagnostopoulos, A.N.; Spyridelis, J. Quasiyeriodic and chaotic self-excited voltage oscillations in TlInTe2. Phys. Rev. B 1994, 49, 16994–16998. [Google Scholar] [CrossRef] [PubMed]
- Panich, A.M. Electronic properties and phase transitions in low-dimensional semiconductors. J. Phys. Condens. Matter 2008, 20, 293202. [Google Scholar] [CrossRef] [Green Version]
- Godzhaev, E.M.; Gyul’mamedov, K.D.; Allakhyarov, E.A. Current–voltage characteristics of TlInX2–TlSmX2 (X= S, Se, Te) alloys. Inorg. Mater. 2003, 39, 113–116. [Google Scholar] [CrossRef]
- Abay, B.; Gurbulak, B.; Yildirim, M.; Efeoglu, H.; Yogurtcu, Y.K. Electrothermal investigation of the switching phenomena in p-type TlInSe2 single crystals. Phys. Status Solidi 1996, 153, 145–151. [Google Scholar] [CrossRef]
- Miller, A.; Miller, D.A.; Smith, S.D. Dynamic non-linear optical processes in semiconductors. Adv. Phys. 1981, 30, 697–800. [Google Scholar] [CrossRef]
- Bonilla, L.L.; Grahn, H.T. Non-linear dynamics of semiconductor superlattices. Rep. Prog. Phys. 2005, 68, 577. [Google Scholar] [CrossRef]
- Shore, K.A. Non-linear dynamics and chaos in semiconductor laser devices. Solid-State Electron. 1987, 30, 59–65. [Google Scholar] [CrossRef]
- Ahrenkiel, R.K.; Keyes, B.M.; Dunlavy, D.J. Non-linear recombination processes in photovoltaic semiconductors. Sol. Cells 1991, 30, 163–176. [Google Scholar] [CrossRef]
- King, J.R.; Meere, M.G.; Rogers, T.G. Asymptotic analysis of a non-linear model for substitutional diffusion in semiconductors. Z. Angew. Math. Phys. 1992, 43, 505–525. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, P.R. Queueing network models in the design and analysis of semiconductor wafer fabs. IEEE Trans. Robot. Autom. 2001, 17, 548–561. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Pan, W.; Yan, L.; Luo, B.; Zou, X.; Xu, M. Cluster synchronization of coupled semiconductor lasers network with complex topology. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 1–7. [Google Scholar] [CrossRef]
- Brandes, U.; Robins, G.; McCranie, A.; Wasserman, S. What is network science? Netw. Sci. 2013, 1, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Barabasi, A.L. Network Science; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- Gao, Z.-K.; Yang, Y.-X.; Fang, P.-C.; Zou, Y.; Xia, C.-Y.; Du, M. Multiscale complex network analysis for analyzing experimental multivariate time-series. Europhys. Lett. 2015, 109, 30005. [Google Scholar] [CrossRef]
- Zhang, J.; Small, M. Complex network from pseudoperiodic time-series: Topology versus dynamics. Phys. Rev. Lett. 2006, 96, 238701. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Yang, H. Complex network-based time-series analysis. Phys. A: Stat. Mech. Appl. 2008, 387, 1381–1386. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, J.; Small, M. Superfamily phenomena and motifs of networks induced from time-series. Proc. Natl. Acad. Sci. USA 2008, 105, 19601–19605. [Google Scholar] [CrossRef] [Green Version]
- Lacasa, L.; Luque, B.; Ballesteros, F.; Luque, J.; Nuno, J.C. From time-series to complex networks: The visibility graph. Proc. Natl. Acad. Sci. USA 2008, 105, 4972–4975. [Google Scholar] [CrossRef] [Green Version]
- Luque, B.; Lacasa, L.; Ballesteros, F.; Luque, J. Horizontal visibility graphs: Exact results for random time-series. Phys. Rev. E 2009, 80, 046103. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Zhou, W.X.; Yuan, W.K. Statistical properties of visibility graph of energy dissipation rates in three-dimensional fully developed turbulence. Physica A 2010, 389, 2675–2681. [Google Scholar] [CrossRef] [Green Version]
- Charakopoulos, A.Κ.; Karakasidis, T.E.; Papanicolaou, P.N.; Liakopoulos, A. The application of complex network time-series analysis in turbulent heated jets. Chaos 2014, 24, 024408. [Google Scholar] [CrossRef]
- Gao, Z.K.; Cai, Q.; Yang, Y.X.; Dang, W.D.; Zhang, S.S. Multiscale limited penetrable horizontal visibility graph for analyzing nonlinear time-series. Sci. Rep. 2016, 6, 35622. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.; Wei, B.; Zhan, J.; Xie, C.; Zhou, D. A visibility graph power averaging aggregation operator: A methodology based on network analysis. Comput. Ind. Eng. 2016, 101, 260–268. [Google Scholar] [CrossRef]
- Iacobello, G.; Scarsoglio, S.; Ridolfi, L. Visibility graph analysis of wall turbulence time-series. Phys. Lett. A 2017, 382, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Tsiotas, D.; Magafas, L. The effect of anti-COVID-19 policies on the evolution of the disease: A complex network analysis of the successful case of Greece. Physics 2020, 2, 325–339. [Google Scholar] [CrossRef]
- Tsiotas, D.; Charakopoulos, A. Visibility in the topology of complex networks: Introducing a new approach. Phys. A: Stat. Mech. Appl. 2018, 505, 280–292. [Google Scholar] [CrossRef]
- Tsiotas, D.; Charakopoulos, A. VisExpA: Visibility expansion algorithm in the topology of complex networks. SoftwareX 2020, 11, 100379. [Google Scholar] [CrossRef]
- Koschutzki, D.; Lehmann, K.; Peeters, L.; Richter, S. Centrality indices. In Network Analysis; Brandes, U., Erlebach, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 16–61. [Google Scholar]
- Newman, M.E.J. Networks: An Introduction; Oxford University Press: Oxford, UK, 2010. [Google Scholar] [CrossRef] [Green Version]
- Barthelemy, M. Spatial networks. Phys. Rep. 2011, 499, 1–101. [Google Scholar] [CrossRef] [Green Version]
- Walpole, R.E.; Myers, R.H.; Myers, S.L.; Ye, K. Probability & Statistics for Engineers & Scientists; Prentice Hall Publications: New York, NY, USA, 2012. [Google Scholar]
- Tsiotas, D. Detecting different topologies immanent in scalefree networks with the same degree distribution. Proc. Natl. Acad. Sci. USA 2019, 116, 6701–6706. [Google Scholar] [CrossRef] [Green Version]
- Blondel, V.; Guillaume, J.-L.; Lambiotte, R.; Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. 2008, 10, P10008. [Google Scholar] [CrossRef] [Green Version]
- Fortunato, S. Community detection in graphs. Phys. Rep. 2010, 486, 75–174. [Google Scholar] [CrossRef] [Green Version]
- Demertzis, K.; Tsiotas, D.; Magafas, L. Modeling and forecasting the COVID-19 temporal spread in Greece: An exploratory approach based on complex network defined splines. Int. J. Environ. Res. Public Health 2020, 17, 4693. [Google Scholar] [CrossRef] [PubMed]
- Cohen, R.; Havlin, S. Scale-Free Networks are Ultrasmall. Phys. Rev. Lett. 2003, 90, 058701. [Google Scholar] [CrossRef] [Green Version]
- Clauset, A.; Shailizi, C.R.; Newmann, M.E. Power-law distributions in empirical data. SIAM Rev. 2009, 51, 661–703. [Google Scholar] [CrossRef] [Green Version]
- Bastian, M.; Heymann, S.; Jacomy, M. Gephi: An open source software for exploring and manipulating networks. In Proceedings of the Third International ICWSM Conference, San Jose, CA, USA, 17–20 May 2009; pp. 361–362. [Google Scholar]
- Tsiotas, D. Detecting differences in the topology of scale-free networks grown under time-dynamic topological fitness. Sci. Rep. 2020, 10, 10630. [Google Scholar] [CrossRef]
Measure | Symbol | Description | Math Formula |
---|---|---|---|
Graph density | ρ | The fraction of the existing connections of the graph (m) to the number of the possible connections (equal to , where n is the number of nodes). It expresses the probability to meet in the GMN a connected pair of nodes. | |
Node Degree | k | The number of edges k(i) being adjacent to a given node i belonging to a graph G(V,E), where V is the node-set and E is the edge-set. Node-degree expresses the node’s communication potential. | |
Node strength | s | For a network edge , where E is the edge-set, the node-strength s(i) is defined by the sum of edge weights wij being adjacent to a given node i. | |
Average Path Length | The average length of the network shortest-paths d(i,j), where n is the number of nodes in the network. | ||
Clustering Coefficient (local) | C(i) | The probability of meeting linked neighbors around a node i, which is equivalent to the number of the node’s connected neighbors E(i) (i.e., the number of triangles that are configured in the neighborhood), divided by the number of the total triplets shaped by this node, which equals to ki(ki–1), where ki is the degree of node i. | |
Modularity | Q | An objective function expressing the potential of a network to be subdivided into communities. In its mathematical formula, gi is the community of node i V (where V is the node-set), [Aij – Pij] is the difference of the actual (Aij) minus the expected (Pij) number of edges falling between a particular pair of vertices i,j V, and δ(gi,gj) is an indicator (the Kronecker’s) function returning 1 when gi=gj. | |
Closeness Centrality | CC | The inverse of the total binary distance d(i,j) computed on the shortest paths originating from a given node i V (where V is the node-set) having destinations all the other nodes j V in the network. This measure expresses the node’s reachability from all other nodes in the network. | |
Betweenness Centrality | CB | The proportion defined by the number σ(i) of the shortest-paths passing through a given node i to the total number σ of the network shortest-paths. |
Network Measure | Symbol | Value |
---|---|---|
Network nodes | n | 2672 |
Network edges | m | 11,066 |
Network components | α | 1 |
Graph density | ρ | 0.003 |
Maximum degree | kmax | 324 |
Minimum degree | kmin | 2 |
Average degree | 8.283 | |
Average path length | 4.496 | |
Network diameter | d(G) | 11 |
Clustering coefficient | C | 0.772 |
Modularity | Q | 0.753 |
Number of communities | card{gi} | 68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsiotas, D.; Magafas, L.; P. Hanias, M. Examination of Chaotic Structures in Semiconductor or Alloy Voltage Time-Series: A Complex Network Approach for the Case of TlInTe2. Physics 2020, 2, 624-639. https://doi.org/10.3390/physics2040036
Tsiotas D, Magafas L, P. Hanias M. Examination of Chaotic Structures in Semiconductor or Alloy Voltage Time-Series: A Complex Network Approach for the Case of TlInTe2. Physics. 2020; 2(4):624-639. https://doi.org/10.3390/physics2040036
Chicago/Turabian StyleTsiotas, Dimitrios, Lykourgos Magafas, and Michael P. Hanias. 2020. "Examination of Chaotic Structures in Semiconductor or Alloy Voltage Time-Series: A Complex Network Approach for the Case of TlInTe2" Physics 2, no. 4: 624-639. https://doi.org/10.3390/physics2040036
APA StyleTsiotas, D., Magafas, L., & P. Hanias, M. (2020). Examination of Chaotic Structures in Semiconductor or Alloy Voltage Time-Series: A Complex Network Approach for the Case of TlInTe2. Physics, 2(4), 624-639. https://doi.org/10.3390/physics2040036