Constraining Dense Matter Physics Using f-Mode Oscillations in Neutron Stars
Abstract
:1. Introduction
2. Formalism
2.1. Microscopic Description
2.2. Macroscopic Description
2.3. Solving the Mode Pulsation Equations
3. Results
3.1. Testing the Numerical Scheme
3.2. Sensitivity Study
3.2.1. Calculation of f-Modes
3.2.2. f-Modes and Tidal Deformability
3.3. Asteroseismology Relations for f-Modes
3.3.1. Linear Relation with Average Density
3.3.2. Higher-Order f-Modes
3.3.3. Scaled Universal Relations
4. Discussions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Abbott, B.P.; Abbott, R.; Abbott, T.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.; Adya, V.; et al. GW170817: Observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.; Adya, V.; et al. Multi-messenger observations of a binary neutron star merger. Astrophys. J. Lett. 2017, 848, L12. [Google Scholar] [CrossRef]
- Oertel, M.; Hempel, M.; Klähn, T.; Typel, S. Equations of state for supernovae and compact stars. Rev. Mod. Phys. 2017, 89, 015007. [Google Scholar] [CrossRef]
- Demorest, P.B.; Pennucci, T.; Ransom, S.M.; Roberts, M.S.E.; Hessels, J.W.T. A Two-solar-mass neutron star measured using Shapiro delay. Nature 2010, 467, 1081. [Google Scholar] [CrossRef]
- Antoniadis, J.; Freire, P.C.C.; Wex, N.; Tauris, T.M.; Lynch, R.S.; van Kerkwijk, M.H.; Kramer, M.; Bassa, C.; Dhillon, V.S.; Dreibe, T.; et al. A Massive pulsar in a compact relativistic binary. Science 2013, 340, 448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, M.C.; Lamb, F.K.; Dittmann, A.J.; Bogdanov, S.; Arzoumanian, Z.; Gendreau, K.C.; Guillot, S.; Harding, A.K.; Ho, W.C.G.; Lattimer, J.M.; et al. PSR J0030+0451 Mass and radius from NICER data and implications for the properties of neutron star matter. Astrophys. J. Lett. 2019, 887, L24. [Google Scholar] [CrossRef] [Green Version]
- Arzoumanian, Z.; Gendreau, K.C.; Baker, C.L.; Cazeau, T.; Hestnes, P.; Kellogg, J.W.; Kenyon, S.J.; Kozon, R.P.; Liu, K.-C.; Manthripragada, S.S.; et al. The Neutron Star Interior Composition Explorer (NICER): Mission definition. Int. Soc. Opt. Photonics 2014, 9144, 914420. [Google Scholar]
- Abbott, B.P.; Abbott, R.; Abbott, T.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.; Adya, V.; et al. GW170817: Measurements of neutron star radii and equation of state. Phys. Rev. Lett. 2018, 121, 161101. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.; Adya, V.; et al. Constraining the p-mode-g-mode tidal instability with GW170817. Phys. Rev. Lett. 2019, 122, 061104. [Google Scholar] [CrossRef] [Green Version]
- Bauswein, A.; Stergioulas, N.; Janka, H.-T. Exploring properties of high-density matter through remnants of neutron-star mergers. Eur. Phys. J. A 2016, 52, 56. [Google Scholar] [CrossRef]
- Faber, J.A.; Rasio, F.A. Binary neutron star mergers. Living Rev. Rel. 2012, 15, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rezzolla, L.; Zanotti, O. Relativistic Hydrodynamics; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Glampedakis, K.; Gualtieri, L. Gravitational waves from single neutron stars: An advanced detector era survey. Astrophys. Space Sci. Libr. 2018, 457, 673. [Google Scholar]
- Andersson, N.; Kokkotas, K.D. Gravitational waves and pulsating stars: What can we learn from future observations? Phys. Rev. Lett. 1996, 77, 4134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersson, N.; Kokkotas, K.D. Towards gravitational-wave asteroseismology. Mon. Not. R. Astron. Soc. 1998, 299, 1059. [Google Scholar] [CrossRef] [Green Version]
- Schutz, B.F. Asteroseismology of neutron stars and black holes. J. Phys. Conf. Ser. 2008, 118, 012005. [Google Scholar] [CrossRef] [Green Version]
- Wen, D.-H.; Li, B.-A.; Chen, H.-Y.; Zhang, N.-B. GW170817 implications on the frequency and damping time of f-mode oscillations of neutron stars. Phys. Rev. C 2019, 99, 045806. [Google Scholar] [CrossRef] [Green Version]
- Blázquez-Salcedo, J.L.; González-Romero, L.M.; Navarro-Lérida, F. Polar quasi-normal modes of neutron stars with equations of state satisfying the 2M⊙ constraint. Phys. Rev. D 2014, 89, 044006. [Google Scholar] [CrossRef] [Green Version]
- Doneva, D.D.; Gaertig, E.; Kokkotas, K.D.; Krüger, C. Gravitational wave asteroseismology of fast rotating neutron stars with realistic equations of state. Phys. Rev. D 2013, 88, 044052. [Google Scholar] [CrossRef] [Green Version]
- Flores, C.V.; Lugones, G. Gravitational wave asteroseismology limits from low density nuclear matter and perturbative QCD. J. Cosmol. Astropart. Phys. 2018, 8, 46. [Google Scholar] [CrossRef] [Green Version]
- Horowitz, C.J.; Serot, B.D. Self-consistent hartree description of finite nuclei in a relativistic quantum field theory. Nucl. Phys. A 1981, 368, 503. [Google Scholar] [CrossRef]
- Horowitz, C.J.; Piekarewicz, J. Neutron star structure and the neutron radius of 208Pb. Phys. Rev. Lett. 2001, 86, 5647. [Google Scholar] [CrossRef] [Green Version]
- Fattoyev, F.J.; Piekarewicz, J. Relativistic models of the neutron-star matter equation of state. Phys. Rev. C 2010, 82, 025805. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.-C.; Piekarewicz, J. Building relativistic mean field models for finite nuclei and neutron stars. Phys. Rev. C 2014, 90, 044305. [Google Scholar] [CrossRef] [Green Version]
- Hornick, N.; Tolos, L.; Zacchi, A.; Christian, J.-E.; Schaffner-Bielich, J. Relativistic parameterizations of neutron matter and implications for neutron stars. Phys. Rev. C 2018, 98, 065804. [Google Scholar] [CrossRef] [Green Version]
- Glendenning, N.K.; Moszkowski, S.A. Reconciliation of neutron-star masses and binding of the Λ in hypernuclei. Phys. Rev. Lett. 1991, 67, 2414. [Google Scholar] [CrossRef]
- Glendenning, N.K. Compact Stars; Springer: New York, NY, USA, 2000. [Google Scholar]
- Yagi, K.; Yunes, N. I-Love-Q relations in neutron stars and their applications to astrophysics, gravitational waves, and fundamental physics. Phys. Rev. D 2013, 88, 023009. [Google Scholar] [CrossRef] [Green Version]
- Annala, E.; Gorda, T.; Kurkela, A.; Vuorinen, A. Gravitational-wave constraints on the neutron-star-matter equation of state. Phys. Rev. Lett. 2018, 120, 172703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Most, E.R.; Weih, L.R.; Rezzolla, L.; Schaffner-Bielich, J. New constraints on radii and tidal deformabilities of neutron stars from GW170817. Phys. Rev. Lett. 2018, 120, 261103. [Google Scholar] [CrossRef] [Green Version]
- De, S.; Finstad, D.; Lattimer, J.M.; Brown, D.A.; Berger, E.; Biwer, C.M. Tidal deformabilities and radii of neutron stars from the observation of GW170817. Phys. Rev. Lett. 2018, 121, 091102. [Google Scholar] [CrossRef] [Green Version]
- Thorne, K.S.; Campolattaro, A. Non-radial pulsation of general-relativistic stellar models. I. Analytic analysis for L >= 2. Astrophys. J. 1967, 149, 591. [Google Scholar] [CrossRef]
- Kokkotas, K.D.; Schmidt, B.G. Quasi-normal modes of stars and black holes. Living Rev. Relativ. 1999, 2, 1. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekhar, S.; Ferrari, V. On the non-radial oscillations of a star. Proc. Roy. Soc. Lond. A 1991, 432, 247. [Google Scholar]
- Detweiler, S.; Lindblom, L. On the nonradial pulsations of general relativistic stellar models. Astrophys. J. 1985, 292, 12. [Google Scholar] [CrossRef]
- Thorne, K.S. Nonradial pulsation of general-relativistic stellar models. III. Analytic and numerical results for neutron stars. Astrophys. J. 1969, 158, 1. [Google Scholar] [CrossRef]
- Thorne, K.S. Nonradial pulsation of general-relativistic stellar models. IV. The weakfield limit. Astrophys. J. 1969, 158, 997. [Google Scholar] [CrossRef]
- Thorne, K.S. Gravitational radiation damping. Phys. Rev. Lett. 1968, 21, 320. [Google Scholar] [CrossRef] [Green Version]
- Sotani, H.; Yasutake, N.; Maruyama, T.; Tatsumi, T. Signatures of hadron-quark mixed phase in gravitational waves. Phys. Rev. D 2011, 83, 024014. [Google Scholar] [CrossRef] [Green Version]
- Cowling, T.G. The Non-radial oscillations of polytropic stars. Mon. Not. R. Astron. Soc 1941, 101, 367. [Google Scholar] [CrossRef] [Green Version]
- Flores, C.V.; Lugones, G. Discriminating hadronic and quark stars through gravitational waves of fluid pulsation modes. Class. Quantum Grav. 2014, 31, 155002. [Google Scholar] [CrossRef] [Green Version]
- Flores, C.V.; Lugones, G. Constraining color flavor locked strange stars in the gravitational wave era. Phys. Rev. C 2017, 95, 025808. [Google Scholar] [CrossRef] [Green Version]
- Tonetto, L.; Lugones, G. Discontinuity gravity modes in hybrid stars: Assessing the role of rapid and slow phase conversions. Phys. Rev. D 2020, 101, 123029. [Google Scholar] [CrossRef]
- Ranea-Sandoval, I.F.; Guilera, O.M.; Mariani, M.; Orsaria, M.G. Oscillation modes of hybrid stars within the relativistic Cowling approximation. J Cosmol. Astropart. Phys. 2018, 12, 31. [Google Scholar] [CrossRef] [Green Version]
- Sotani, H. Gravitational wave asteroseismology for low-mass neutron stars. Phys. Rev. D 2020, 102, 063023. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.; Adya, V.; et al. Model comparison from LIGO–Virgo data on GW170817’s binary components and consequences for the merger remnant. Class. Quantum Grav. 2020, 37, 045006. [Google Scholar] [CrossRef]
- Benhar, O.; Ferrari, V.; Gualtieri, L. Gravitational waves from neutron stars described by modern EOS. AIP Conf. Proc. 2005, 751, 211. [Google Scholar]
- Gaertig, E.; Glampedakis, K.; Kokkotas, K.D.; Zink, B. f-Mode instability in relativistic neutron Stars. Phys. Rev. Lett. 2011, 107, 101102. [Google Scholar] [CrossRef] [Green Version]
- Passamonti, A.; Gaertig, E.; Kokkotas, K.D.; Doneva, D. Evolution of the f-mode instability in neutron stars and gravitational wave detectability. Phys. Rev. D 2013, 87, 084010. [Google Scholar] [CrossRef] [Green Version]
- Lau, H.K.; Leung, P.T.; Lin, L.M. Inferring physical parameters of compact stars from their f-mode gravitational wave signals. Astrophys. J. 2010, 714, 1234. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Castillo, D.E.; Ayriyan, A.; Barnaföldi, G.G.; Grigorian, H.; Pósfay, P. Studying the parameters of the extended σ-ω model for neutron star matter. Eur. Phys. Spec. Top. 2020, 229, 3615. [Google Scholar] [CrossRef]
- Alvarez-Castillo, D.E.; Ayriyan, A.; Barnaföldi, G.G.; Pósfay, P. Estimating the values and variations of Neutron Star observables by dense nuclear matter properties. Phys. Part. Nucl. 2020, 51, 725. [Google Scholar] [CrossRef]
- Schneider, A.S.; Roberts, L.F.; Ott, C.D.; O’Connor, E. Equation of state effects in the core collapse of a 20-M⊙ star. Phys. Rev. C 2019, 100, 055802. [Google Scholar] [CrossRef] [Green Version]
Model | /m | |||||
---|---|---|---|---|---|---|
[fm ] | [MeV] | [MeV] | [MeV] | [MeV] | ||
GM1 | 0.153 | −16.3 | 300 | 32.5 | 93.7 | 0.70 |
GM3 | 0.153 | −16.3 | 240 | 32.5 | 89.7 | 0.78 |
RMF fixed | 0.16 | −16.0 | 240 | 32 | 60 | 0.60 |
variation | [0.15, 0.16] | [−16.5, −15.5] | [240, 280] | [30, 32] | [50, 60] | [0.55, 0.75] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaiswal, S.; Chatterjee, D. Constraining Dense Matter Physics Using f-Mode Oscillations in Neutron Stars. Physics 2021, 3, 302-319. https://doi.org/10.3390/physics3020022
Jaiswal S, Chatterjee D. Constraining Dense Matter Physics Using f-Mode Oscillations in Neutron Stars. Physics. 2021; 3(2):302-319. https://doi.org/10.3390/physics3020022
Chicago/Turabian StyleJaiswal, Sukrit, and Debarati Chatterjee. 2021. "Constraining Dense Matter Physics Using f-Mode Oscillations in Neutron Stars" Physics 3, no. 2: 302-319. https://doi.org/10.3390/physics3020022
APA StyleJaiswal, S., & Chatterjee, D. (2021). Constraining Dense Matter Physics Using f-Mode Oscillations in Neutron Stars. Physics, 3(2), 302-319. https://doi.org/10.3390/physics3020022