Description of Nonlinear Vortical Flows of Incompressible Fluid in Terms of a Quasi-Potential
Abstract
:1. Introduction
2. Governing Equations and Quasi-Potential in Cylindrical Coordinates
2.1. Case 1—Vector-Potential Does Not Contain the Radial Component
2.2. Case 2—Vector-Potential Does Not Contain the Azimuthal Component
Example of a Vortical Flow Illustrating Case 2
2.3. Case 3—Vector-Potential Does Not Contain the Axial Component
Example of a Vortical Flow Illustrating Case 3
3. Governing Equations and Quasi-Potential in Spherical Coordinates
3.1. Case 1—Vector-Potential Does Not Contain the Radial Component
The Illustrative Example
3.2. Case 2—Vector-Potential Does Not Contain the Azimuthal Component
3.3. Case 3—Vector-Potential Does Not Contain the Polar Component
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix B
References
- Lamb, H. Hydrodynamics; Cambridge University Press: Cambridge, UK, 1932. [Google Scholar]
- Milne-Thomson, L.M. Theoretical Hydromechanics; Macmillan Publishers: London, UK, 1960. [Google Scholar]
- Kochin, N.E.; Kibel, I.A.; Roze, N.V. Theoretical Hydromechanics; Interscience Publishers: New York, NY, USA, 1964. [Google Scholar]
- Batchelor, G.K. An Introduction to Fluid Mechanics; Cambridge University Press: Cambridge, UK, 1967. [Google Scholar]
- Landau, L.D.; Lifshitz, E.M. Fluid Mechanics; Pergamon Press: Oxford, UK, 1993. [Google Scholar]
- Stepanyants, Y.A.; Yakubovich, E.I. Scalar description of three-dimensional vortex flows of incompressible fluid. Dokl. Phys. 2011, 56, 130–133. [Google Scholar] [CrossRef]
- Stepanyants, Y.A.; Yakubovich, E.I. The Bernoulli integral for a certain class of non-stationary viscous vortical flows of incompressible fluid. Stud. Appl. Math. 2015, 135, 295–309. [Google Scholar] [CrossRef]
- Makinde, O.D.; Khan, W.A.; Chinyoka, T. New developments in fluid mechanics and its engineering applications. Math. Probl. Eng. 2013, 2013, 797390. [Google Scholar] [CrossRef]
- Yakubovich, E.I.; Zenkovich, D.A. Matrix approach to Lagrangian fluid dynamics. J. Fluid Mech. 2001, 443, 167–196. [Google Scholar] [CrossRef]
- Yakubovich, E.I.; Shrira, V.I. Non-steady columnar motions in rotating stratified Boussinesq fluids: Exact Lagrangian and Eulerian description. J. Fluid Mech. 2011, 691, 417–439. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ermakov, A.; Stepanyants, Y. Description of Nonlinear Vortical Flows of Incompressible Fluid in Terms of a Quasi-Potential. Physics 2021, 3, 799-813. https://doi.org/10.3390/physics3040050
Ermakov A, Stepanyants Y. Description of Nonlinear Vortical Flows of Incompressible Fluid in Terms of a Quasi-Potential. Physics. 2021; 3(4):799-813. https://doi.org/10.3390/physics3040050
Chicago/Turabian StyleErmakov, Andrei, and Yury Stepanyants. 2021. "Description of Nonlinear Vortical Flows of Incompressible Fluid in Terms of a Quasi-Potential" Physics 3, no. 4: 799-813. https://doi.org/10.3390/physics3040050
APA StyleErmakov, A., & Stepanyants, Y. (2021). Description of Nonlinear Vortical Flows of Incompressible Fluid in Terms of a Quasi-Potential. Physics, 3(4), 799-813. https://doi.org/10.3390/physics3040050