Instability of Vertical Throughflows in Bidisperse Porous Media
Abstract
:1. Introduction
2. Mathematical Model and Preliminaries
3. Linear Instability
4. Nonlinear Stability
5. Results and Conclusions
- (i)
- In the absence of throughflow (i.e., when the horizontal bidisperse porous medium is filled by a fluid at the rest state), reverts to the critical Darcy–Rayleigh thermal number at which steady convection sets in.
- (ii)
- Since , the throughflow has a stabilizing effect in the sense that it loses its stability for a higher Darcy–Rayleigh number, compared to that related to thermal conduction solution.
- (iii)
- In order to compare the result obtained here with the case of a monodispersive porous layer, let us define the classical Darcy–Rayleigh number byThen, the critical Darcy–Rayleigh number for the onset of steady instability for a vertical throughflow saturating a monodispersive layer is obtained by substituting Equation (30) into Equation (18) and letting , i.e., it is given by
- (iv)
- −
- if , then , i.e., the double porosity has a destabilizing effect; and
- −
- if , then , i.e., the double porosity has a stabilizing effect.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, Z.Q.; Cheng, P.; Hsu, C.T. A theoretical and experimental study on stagnant thermal conductivity of bidispersed porous media. Int. Commun. Heat Mass Transf. 2000, 27, 601–610. [Google Scholar] [CrossRef]
- Nield, D.A.; Kuznetsov, A.V. A two-velocity temperature model for a bidispersive porous medium: Forced convection in a channel. Trans. Porous Media 2005, 59, 325–339. [Google Scholar] [CrossRef]
- Nield, D.A.; Kuznetsov, A.V. The onset of convection in a bidispersive porous medium. Int. J. Heat Mass Transf. 2006, 49, 3068–3074. [Google Scholar] [CrossRef]
- Nield, D.A.; Kuznetsov, A.V. A note on modelling high speed flow in a bidispersive porous medium. Trans. Porous Media 2013, 96, 495–499. [Google Scholar] [CrossRef]
- Nield, D.A. A note on the modelling of a bidispersive porous media. Trans. Porous Media 2016, 111, 517–520. [Google Scholar] [CrossRef]
- Falsaperla, P.; Mulone, G.; Straughan, B. Bidispersive inclined convection. Proc. R. Soc. A 2016, 472, 20160480. [Google Scholar] [CrossRef] [Green Version]
- Capone, F.; De Luca, R.; Gentile, M. Coriolis effect on thermal convection in a rotating bidispersive porous layer. Proc. R. Soc. A 2020, 476, 47620190875. [Google Scholar] [CrossRef] [Green Version]
- Capone, F.; De Luca, R.; Gentile, M. Thermal convection in rotating anisotropic bidispersive porous layers. Mech. Res. Commun. 2020, 110, 103601. [Google Scholar] [CrossRef]
- Capone, F.; De Luca, R. The effect of the Vadasz number on the onset of thermal convection in rotating bidispersive porous media. Fluids 2020, 5, 173. [Google Scholar] [CrossRef]
- Capone, F.; De Luca, R.; Massa, G. Effect of anisotropy on the onset of convection in rotating bi-disperse Brinkman porous media. Acta Mech. 2020, 1–14. [Google Scholar] [CrossRef]
- Straughan, B. Anisotropic bidispersive convection. Proc. R. Soc. A 2019, 475, 20190206. [Google Scholar] [CrossRef]
- Franchi, F.; Nibbi, R.; Straughan, B. Continuous dependence on modelling for temperature dependent bidispersive flow. Proc. R. Soc. A 2017, 473, 20170485. [Google Scholar] [CrossRef] [Green Version]
- Straughan, B. Bidispersive double diffusive convection. Int. J. Heat Mass Transf. 2018, 126, 504–508. [Google Scholar] [CrossRef] [Green Version]
- Straughan, B. Effect of inertia on double diffusive bidispersive convection. Int. J. Heat Mass Transf. 2018, 129, 389–396. [Google Scholar] [CrossRef] [Green Version]
- Badday, A.J.; Harfash, A.J. Chemical reaction effect on convection in bidispersive porous medium. Transp. Porous Media 2021, 137, 381–397. [Google Scholar] [CrossRef]
- Badday, A.J.; Harfash, A.J. Double-diffusive convection in bidispersive porous medium with chemical reaction and magnetic field effects. Transp. Porous Media 2021, 139, 45–66. [Google Scholar] [CrossRef]
- Barletta, A.; di Schio, E.R.; Storesletten, L. Convective roll instabilities of vertical throughflow with viscous dissipation in a horizontal porous layer. Transp. Porous Media 2010, 3, 461–477. [Google Scholar] [CrossRef] [Green Version]
- Barletta, A.; Storesletten, L. Linear instability of the vertical throughflow in a horizontal porous layer saturated by a power-law fluid. Int. J. Heat Mass Transf. 2016, 99, 293–302. [Google Scholar] [CrossRef]
- Capone, F.; De Luca, R. On the stability-instability of vertical throughflows in double diffusive mixtures saturating rotating porous layers with large pores. Ric. Mat. 2014, 63, 119–148. [Google Scholar] [CrossRef]
- Chen, F. Throughflow effects on convective instability in superposed fluid and porous layers. J. Fluid Mech. 1991, 231, 113–133. [Google Scholar] [CrossRef] [Green Version]
- Hill, A.A.; Rionero, S.; Straughan, B. Global stability for penetrative convection with throughflow in a porous material. IMA J. Appl. Math. 2007, 72, 635–643. [Google Scholar] [CrossRef]
- Kiran, P. Throughflow and non-uniformheating effects on double diffusive oscillatory convection in a porous medium. Ain Shams Eng. J. 2016, 7, 453–462. [Google Scholar] [CrossRef] [Green Version]
- Murty, Y.N. Effect of throughflow and magnetic field on Bénard convection in micropolar fluids. Acta Mech. 2001, 150, 11–21. [Google Scholar] [CrossRef]
- Nield, D.A.; Kuznetsov, A.V. Onset of convection in a porous medium with strong vertical throughflow. Transp. Porous Media 2011, 90, 883–888. [Google Scholar] [CrossRef]
- Capone, F.; De Luca, R.; Torcicollo, I. Longtime behavior of vertical throughflows for binary mixtures in porous layers. Int. J. Non-Linear Mech. 2013, 52, 1–7. [Google Scholar] [CrossRef]
- Capone, F.; De Luca, R.; Torcicollo, I. Instability of vertical constant through flows in binary mixtures in porous media with large pores. Math. Probl. Eng. 2019, 2019, 7379597. [Google Scholar] [CrossRef]
- De Luca, R. Global nonlinear stability and “cold convection instability” of non-constant porous throughflows, 2D in vertical planes. Ric. Mat. 2015, 64, 99–113. [Google Scholar] [CrossRef]
- Gentile, M.; Straughan, B. Bidispersive thermal convection. Int. J. Heat Mass Trans. 2017, 114, 837–840. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Capone, F.; De Luca, R. Instability of Vertical Throughflows in Bidisperse Porous Media. Physics 2021, 3, 821-828. https://doi.org/10.3390/physics3040052
Capone F, De Luca R. Instability of Vertical Throughflows in Bidisperse Porous Media. Physics. 2021; 3(4):821-828. https://doi.org/10.3390/physics3040052
Chicago/Turabian StyleCapone, Florinda, and Roberta De Luca. 2021. "Instability of Vertical Throughflows in Bidisperse Porous Media" Physics 3, no. 4: 821-828. https://doi.org/10.3390/physics3040052
APA StyleCapone, F., & De Luca, R. (2021). Instability of Vertical Throughflows in Bidisperse Porous Media. Physics, 3(4), 821-828. https://doi.org/10.3390/physics3040052