Recent Progress in Gamow Shell Model Calculations of Drip Line Nuclei
Abstract
:1. Introduction
2. Method
2.1. Realistic Gamow Shell Model Calculations
2.2. Gamow Shell Model with Phenomenological Nuclear Potential
3. Gamow Shell Model Calculations
3.1. Neutron-Rich Oxygen and Fluorine Isotopes
3.1.1. Realistic Gamow Shell Model Calculations
3.1.2. Ab-initio Realistic GSM Calculations within GHF Basis
3.1.3. GSM Calculations with Phenomenological Nuclear Potential
3.2. Realistic Gamow Shell Model Calculations of Neutron-Rich Calcium Isotopes
3.3. One-Proton and Two-Proton Decays in Ne and Mg Unbound Nuclei
4. Summary
- Due to the large computational cost of the GSM calculations, the GSM has been applied for the neutron-rich nuclei with only one or two valence protons, and, for proton-rich nuclei, with only one or two valence neutrons in the non-resonant continuum. For example, the model space dimension of F is about with two valence particles in the continuum. It can easily reach without truncations, which is untractable numerically. In the nuclear chart, most of the drip line nuclei need to be described with many valence particles (protons and neutrons). One can think of the neutron-rich Ne and Mg drip line isotopes, where both continuum coupling and strong internucleon correlations must be treated properly. These isotopes will provide a challenge for future GSM calculations, due to the large dimensions;
- The diagonalization of the GSM Hamiltonian in order to obtain eigenstates of large resonance widths, such as the second state in He, is very difficult from a numerical point of view;
- The dimensions of the GSM Hamiltonian matrices increase extremely quickly when one adds valence particles, and thus the treatment of the many-body Hamiltonian is difficult when using the configuration interaction framework. Other kinds of many-body methods are urgently needed. The two-particle reduced density matrix method is one of the promising methods to solve the dimensionality problem of the GSM many-body Hamiltonian [103];
- The unbound single-particle states of s waves in neutron-rich nuclei are anti-bound states, which are difficult to include in many-body GSM calculations. The consideration of many-body anti-bound states in GSM (the ground state of Li is supposed to be anti-bound, for example [104]) is thus also a challenge for future applications of GSM.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tanihata, I.; Savajols, H.; Kanungo, R. Recent experimental progress in nuclear halo structure studies. Prog. Part. Nucl. Phys. 2013, 68, 215–313. [Google Scholar] [CrossRef]
- Motobayashi, T. World new facilities for radioactive isotope beams. EPJ Web Conf. 2014, 66, 01013. [Google Scholar] [CrossRef] [Green Version]
- Blank, B.; Borge, M. Nuclear structure at the proton drip line: Advances with nuclear decay studies. Prog. Part. Nucl. Phys. 2008, 60, 403–483. [Google Scholar] [CrossRef]
- Pfützner, M.; Karny, M.; Grigorenko, L.V.; Riisager, K. Radioactive decays at limits of nuclear stability. Rev. Mod. Phys. 2012, 84, 567–619. [Google Scholar] [CrossRef] [Green Version]
- Michel, N.; Nazarewicz, W.; Płoszajczak, M.; Vertse, T. Shell model in the complex energy plane. J. Phys. G Nucl. Part. Phys. 2009, 36, 013101. [Google Scholar] [CrossRef] [Green Version]
- Riisager, K. Nuclear halo states. Rev. Mod. Phys. 1994, 66, 1105–1116. [Google Scholar] [CrossRef]
- Al-Khalili, J. An introduction to halo nuclei. In The Euroschool Lectures on Physics with Exotic Beams, Vol. I; Al-Khalili, J., Roeckl, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 77–112. [Google Scholar] [CrossRef]
- Kondo, Y.; Nakamura, T.; Tanaka, R.; Minakata, R.; Ogoshi, S.; Orr, N.A.; Achouri, N.L.; Aumann, T.; Baba, H.; Delaunay, F.; et al. Nucleus 26O: A barely unbound system beyond the drip Line. Phys. Rev. Lett. 2016, 116, 102503. [Google Scholar] [CrossRef]
- Michel, N.; Nazarewicz, W.; Płoszajczak, M.; Okołowicz, J. Gamow shell model description of weakly bound nuclei and unbound nuclear states. Phys. Rev. C 2003, 67, 054311. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://www.nndc.bnl.gov/ensdf/ (accessed on 10 August 2021).
- Renzi, F.; Raabe, R.; Randisi, G.; Smirnov, D.; Angulo, C.; Cabrera, J.; Casarejos, E.; Keutgen, T.; Ninane, A.; Charvet, J.L.; et al. Spectroscopy of 7He using the 9Be(6He,8Be) transfer reaction. Phys. Rev. C 2016, 94, 024619. [Google Scholar] [CrossRef] [Green Version]
- Votaw, D.; DeYoung, P.A.; Baumann, T.; Blake, A.; Boone, J.; Brown, J.; Chrisman, D.; Finck, J.E.; Frank, N.; Gombas, J.; et al. Low-lying level structure of the neutron-unbound N = 7 isotones. Phys. Rev. C 2020, 102, 014325. [Google Scholar] [CrossRef]
- Alkhazov, G.D.; Andronenko, M.N.; Dobrovolsky, A.V.; Egelhof, P.; Gavrilov, G.E.; Geissel, H.; Irnich, H.; Khanzadeev, A.V.; Korolev, G.A.; Lobodenko, A.A.; et al. Nuclear matter distributions in 6He and 8He from small angle p-He scattering in inverse kinematics at intermediate energy. Phys. Rev. Lett. 1997, 78, 2313–2316. [Google Scholar] [CrossRef]
- Wang, L.B.; Mueller, P.; Bailey, K.; Drake, G.W.F.; Greene, J.P.; Henderson, D.; Holt, R.J.; Janssens, R.V.F.; Jiang, C.L.; Lu, Z.T.; et al. Laser spectroscopic determination of the 6He nuclear charge radius. Phys. Rev. Lett. 2004, 93, 142501. [Google Scholar] [CrossRef] [Green Version]
- Mueller, P.; Sulai, I.A.; Villari, A.C.C.; Alcántara-Núñez, J.A.; Alves-Condé, R.; Bailey, K.; Drake, G.W.F.; Dubois, M.; Eléon, C.; Gaubert, G.; et al. Nuclear charge radius of 8He. Phys. Rev. Lett. 2007, 99, 252501. [Google Scholar] [CrossRef] [Green Version]
- Michel, N.; Nazarewicz, W.; Płoszajczak, M.; Rotureau, J. Antibound states and halo formation in the Gamow shell model. Phys. Rev. C 2006, 74, 054305. [Google Scholar] [CrossRef] [Green Version]
- Papadimitriou, G.; Kruppa, A.T.; Michel, N.; Nazarewicz, W.; Płoszajczak, M.; Rotureau, J. Charge radii and neutron correlations in helium halo nuclei. Phys. Rev. C 2011, 84, 051304. [Google Scholar] [CrossRef] [Green Version]
- Michel, N.; Li, J.G.; Xu, F.R.; Zuo, W. Two-neutron halo structure of 31F. Phys. Rev. C 2020, 101, 031301. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.Z.; Xu, F.R.; Michel, N.; Zhang, S.; Li, J.G.; Hu, B.S.; Coraggio, L.; Itaco, N.; Gargano, A. Continuum and three-nucleon force in Borromean system: The 17Ne case. Phys. Lett. B 2020, 808, 135673. [Google Scholar] [CrossRef]
- Barrett, B.R.; Navrátil, P.; Vary, J.P. Ab initio no core shell model. Prog. Part. Nucl. Phys. 2013, 69, 131–181. [Google Scholar] [CrossRef] [Green Version]
- Somà, V.; Cipollone, A.; Barbieri, C.; Navrátil, P.; Duguet, T. Chiral two- and three-nucleon forces along medium-mass isotope chains. Phys. Rev. C 2014, 89, 061301. [Google Scholar] [CrossRef] [Green Version]
- Jansen, G.R.; Engel, J.; Hagen, G.; Navratil, P.; Signoracci, A. Ab initio coupled-cluster effective interactions for the shell model: Application to neutron-rich oxygen and carbon isotopes. Phys. Rev. Lett. 2014, 113, 142502. [Google Scholar] [CrossRef] [Green Version]
- Hagen, G.; Hjorth-Jensen, M.; Jansen, G.; Papenbrock, T. Emergent properties of nuclei from ab initio coupled-cluster calculations. Phys.Scr. 2016, 91, 063006. [Google Scholar] [CrossRef]
- Stroberg, S.R.; Calci, A.; Hergert, H.; Holt, J.D.; Bogner, S.K.; Roth, R.; Schwenk, A. Nucleus-dependent valence-space approach to nuclear structure. Phys. Rev. Lett. 2017, 118, 032502. [Google Scholar] [CrossRef] [Green Version]
- Caurier, E.; Martínez-Pinedo, G.; Nowacki, F.; Poves, A.; Zuker, A.P. The shell model as a unified view of nuclear structure. Rev. Mod. Phys. 2005, 77, 427–488. [Google Scholar] [CrossRef] [Green Version]
- Otsuka, T.; Gade, A.; Sorlin, O.; Suzuki, T.; Utsuno, Y. Evolution of shell structure in exotic nuclei. Rev. Mod. Phys. 2020, 92, 015002. [Google Scholar] [CrossRef] [Green Version]
- Papadimitriou, G.; Rotureau, J.; Michel, N.; Płoszajczak, M.; Barrett, B.R. Ab initio no-core Gamow shell model calculations with realistic interactions. Phys. Rev. C 2013, 88, 044318. [Google Scholar] [CrossRef]
- Li, J.G.; Michel, N.; Hu, B.S.; Zuo, W.; Xu, F.R. Ab initio no-core Gamow shell-model calculations of multineutron systems. Phys. Rev. C 2019, 100, 054313. [Google Scholar] [CrossRef] [Green Version]
- Li, J.G.; Michel, N.; Zuo, W.; Xu, F.R. Resonances of A = 4T = 1 isospin triplet states within the ab initio no-core Gamow shell model. Phys. Rev. C 2021, 104, 024319. [Google Scholar] [CrossRef]
- Navrátil, P.; Quaglioni, S.; Hupin, G.; Romero-Redondo, C.; Calci, A. Unified ab initio approaches to nuclear structure and reactions. Phys. Scr. 2016, 91, 053002. [Google Scholar] [CrossRef] [Green Version]
- Hagen, G.; Hjorth-Jensen, M.; Jansen, G.R.; Machleidt, R.; Papenbrock, T. Continuum Effects and Three-Nucleon Forces in Neutron-Rich Oxygen Isotopes. Phys. Rev. Lett. 2012, 108, 242501. [Google Scholar] [CrossRef] [Green Version]
- Hagen, G.; Hjorth-Jensen, M.; Jansen, G.R.; Machleidt, R.; Papenbrock, T. Evolution of Shell Structure in Neutron-Rich Calcium Isotopes. Phys. Rev. Lett. 2012, 109, 032502. [Google Scholar] [CrossRef] [Green Version]
- Hu, B.S.; Wu, Q.; Sun, Z.H.; Xu, F.R. Ab initio Gamow in-medium similarity renormalization group with resonance and continuum. Phys. Rev. C 2019, 99, 061302. [Google Scholar] [CrossRef] [Green Version]
- Volya, A.; Zelevinsky, V. Discrete and Continuum Spectra in the Unified Shell Model Approach. Phys. Rev. Lett. 2005, 94, 052501. [Google Scholar] [CrossRef] [Green Version]
- Rotureau, J.; Okołowicz, J.; Płoszajczak, M. Microscopic theory of the two-proton radioactivity. Phys. Rev. Lett. 2005, 95, 042503. [Google Scholar] [CrossRef] [Green Version]
- Id Betan, R.; Liotta, R.J.; Sandulescu, N.; Vertse, T. Two-particle resonant states in a many-body mean field. Phys. Rev. Lett. 2002, 89, 042501. [Google Scholar] [CrossRef] [Green Version]
- Michel, N.; Nazarewicz, W.; Płoszajczak, M.; Bennaceur, K. Gamow shell model description of neutron-rich nuclei. Phys. Rev. Lett. 2002, 89, 042502. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.H.; Wu, Q.; Zhao, Z.H.; Hu, B.S.; Dai, S.J.; Xu, F.R. Resonance and continuum Gamow shell model with realistic nuclear forces. Phys. Lett. B 2017, 769, 227–232. [Google Scholar] [CrossRef]
- Ma, Y.Z.; Xu, F.R.; Coraggio, L.; Hu, B.S.; Li, J.G.; Fukui, T.; De Angelis, L.; Itaco, N.; Gargano, A. Chiral three-nucleon force and continuum for dripline nuclei and beyond. Phys. Lett. B 2020, 802, 135257. [Google Scholar] [CrossRef]
- Berggren, T. On the use of resonant states in eigenfunction expansions of scattering and reaction amplitudes. Nucl. Phys. A 1968, 109, 265–287. [Google Scholar] [CrossRef]
- Hu, B.S.; Wu, Q.; Li, J.G.; Ma, Y.Z.; Sun, Z.H.; Michel, N.; Xu, F.R. An ab initio Gamow shell model approach with a core. Phys. Lett. B 2020, 802, 135206. [Google Scholar] [CrossRef]
- Li, J.G.; Michel, N.; Zuo, W.; Xu, F.R. Unbound spectra of neutron-rich oxygen isotopes predicted by the Gamow shell model. Phys. Rev. C 2021, 103, 034305. [Google Scholar] [CrossRef]
- Jaganathen, Y.; Id Betan, R.M.; Michel, N.; Nazarewicz, W.; Płoszajczak, M. Quantified Gamow shell model interaction for psd-shell nuclei. Phys. Rev. C 2017, 96, 054316. [Google Scholar] [CrossRef] [Green Version]
- Hagen, G.; Hjorth-Jensen, M.; Michel, N. Gamow shell model and realistic nucleon-nucleon interactions. Phys. Rev. C 2006, 73, 064307. [Google Scholar] [CrossRef] [Green Version]
- Tsukiyama, K.; Hjorth-Jensen, M.; Hagen, G. Gamow shell-model calculations of drip-line oxygen isotopes. Phys. Rev. C 2009, 80, 051301. [Google Scholar] [CrossRef] [Green Version]
- Furnstahl, R.J.; Hagen, G.; Papenbrock, T. Corrections to nuclear energies and radii in finite oscillator spaces. Phys. Rev. C 2012, 86, 031301. [Google Scholar] [CrossRef] [Green Version]
- Li, J.G.; Hu, B.S.; Wu, Q.; Gao, Y.; Dai, S.J.; Xu, F.R. Neutron-rich calcium isotopes within realistic Gamow shell model calculations with continuum coupling. Phys. Rev. C 2020, 102, 034302. [Google Scholar] [CrossRef]
- Michel, N.; Li, J.G.; Xu, F.R.; Zuo, W. Proton decays in 16Ne and 18Mg and isospin-symmetry breaking in carbon isotopes and isotones. Phys. Rev. C 2021, 103, 044319. [Google Scholar] [CrossRef]
- Michel, N.; Płoszajczak, M. The Gamow Shell Model: The Unified Theory of Nuclear Structure and Reactions; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar] [CrossRef]
- Dudek, J.; Szymański, Z.; Werner, T. Woods-Saxon potential parameters optimized to the high spin spectra in the lead region. Phys. Rev. C 1981, 23, 920–925. [Google Scholar] [CrossRef]
- Gyarmati, B.; Vertse, T. On the normalization of Gamow functions. Nucl. Phys. A 1971, 160, 523–528. [Google Scholar] [CrossRef]
- Newton, R. Scattering Theory of Waves and Particles; Dover Publications: New York, NY, USA, 2013. [Google Scholar] [CrossRef] [Green Version]
- Michel, N.; Aktulga, H.; Jaganathen, Y. Toward scalable many-body calculations for nuclear open quantum systems using the Gamow Shell Model. Comp. Phys. Comm. 2020, 247, 106978. [Google Scholar] [CrossRef] [Green Version]
- Michel, N.; Li, J.G.; Xu, F.R.; Zuo, W. Description of proton-rich nuclei in the A ≈ 20 region within the Gamow shell model. Phys. Rev. C 2019, 100, 064303. [Google Scholar] [CrossRef] [Green Version]
- Machleidt, R. High-precision, charge-dependent Bonn nucleon-nucleon potential. Phys. Rev. C 2001, 63, 024001. [Google Scholar] [CrossRef] [Green Version]
- Machleidt, R.; Entem, D. Chiral effective field theory and nuclear forces. Phys. Rep. 2011, 503, 1–75. [Google Scholar] [CrossRef] [Green Version]
- Hjorth-Jensen, M.; Kuo, T.T.; Osnes, E. Realistic effective interactions for nuclear systems. Phys. Rep. 1995, 261, 125–270. [Google Scholar] [CrossRef]
- Coraggio, L.; Covello, A.; Gargano, A.; Itaco, N.; Kuo, T. Effective shell-model hamiltonians from realistic nucleon–nucleon potentials within a perturbative approach. Ann. Phys. 2012, 327, 2125–2151. [Google Scholar] [CrossRef] [Green Version]
- Bogner, S.; Furnstahl, R.; Schwenk, A. From low-momentum interactions to nuclear structure. Prog. Part. Nucl. Phys. 2010, 65, 94–147. [Google Scholar] [CrossRef] [Green Version]
- Moshinsky, M. Transformation brackets for harmonic oscillator functions. Nucl. Phys. 1959, 13, 104–116. [Google Scholar] [CrossRef]
- Kuo, T.; Lee, S.; Ratcliff, K. A folded-diagram expansion of the model-space effective hamiltonian. Nucl. Phys. A 1971, 176, 65–88. [Google Scholar] [CrossRef]
- Suzuki, K.; Kumagai, H.; Okamoto, R.; Matsuzaki, M. Recursion method for deriving an energy-independent effective interaction. Phys. Rev. C 2014, 89, 044003. [Google Scholar] [CrossRef]
- Takayanagi, K. Effective Hamiltonian in the extended Krenciglowa–Kuo method. Nucl. Phys. A 2011, 864, 91–112. [Google Scholar] [CrossRef]
- Suzuki, Y.; Ikeda, K. Cluster-orbital shell model and its application to the He isotopes. Phys. Rev. C 1988, 38, 410–413. [Google Scholar] [CrossRef]
- Thompson, D.; Lemere, M.; Tang, Y. Systematic investigation of scattering problems with the resonating-group method. Nucl. Phys. A 1977, 286, 53–66. [Google Scholar] [CrossRef]
- Furutani, H.; Horiuchi, H.; Tamagaki, R. Cluster-model study of the T=1 states in A=4 system: 3He+p scattering. Prog. Theor. Phys. 1979, 62, 981–1001. [Google Scholar] [CrossRef] [Green Version]
- Furutani, H.; Kanada, H.; Kaneko, T.; Nagata, S.; Nishioka, H.; Okabe, S.; Saito, S.; Sakuda, T.; Seya, M. Study of non-alpha-nuclei based on the viewpoint of cluster correlations. Prog. Theor. Phys. Supp. 1980, 68, 193–302. [Google Scholar] [CrossRef] [Green Version]
- Brown, B.A.; Richter, W.A. New “USD” Hamiltonians for the sd shell. Phys. Rev. C 2006, 74, 034315. [Google Scholar] [CrossRef] [Green Version]
- Bogner, S.K.; Hergert, H.; Holt, J.D.; Schwenk, A.; Binder, S.; Calci, A.; Langhammer, J.; Roth, R. Nonperturbative shell-model interactions from the in-medium similarity renormalization group. Phys. Rev. Lett. 2014, 113, 142501. [Google Scholar] [CrossRef] [Green Version]
- Becheva, E.; Blumenfeld, Y.; Khan, E.; Beaumel, D.; Daugas, J.M.; Delaunay, F.; Demonchy, C.E.; Drouart, A.; Fallot, M.; Gillibert, A.; et al. N = 14 shell closure in 22O viewed through a neutron sensitive probe. Phys. Rev. Lett. 2006, 96, 012501. [Google Scholar] [CrossRef] [Green Version]
- Stanoiu, M.; Azaiez, F.; Dombrádi, Z.; Sorlin, O.; Brown, B.A.; Belleguic, M.; Sohler, D.; Saint Laurent, M.G.; Lopez-Jimenez, M.J.; Penionzhkevich, Y.E.; et al. N = 14 and 16 shell gaps in neutron-rich oxygen isotopes. Phys. Rev. C 2004, 69, 034312. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, C.R.; Baumann, T.; Bazin, D.; Brown, J.; Christian, G.; DeYoung, P.A.; Finck, J.E.; Frank, N.; Hinnefeld, J.; Howes, R.; et al. Determination of the N = 16 shell closure at the oxygen drip line. Phys. Rev. Lett. 2008, 100, 152502. [Google Scholar] [CrossRef]
- Tshoo, K.; Satou, Y.; Bhang, H.; Choi, S.; Nakamura, T.; Kondo, Y.; Deguchi, S.; Kawada, Y.; Kobayashi, N.; Nakayama, Y.; et al. N = 16 spherical shell closure in 24O. Phys. Rev. Lett. 2012, 109, 022501. [Google Scholar] [CrossRef] [Green Version]
- Kohley, Z.; Baumann, T.; Bazin, D.; Christian, G.; DeYoung, P.A.; Finck, J.E.; Frank, N.; Jones, M.; Lunderberg, E.; Luther, B.; et al. Study of two-neutron radioactivity in the decay of 26O. Phys. Rev. Lett. 2013, 110, 152501. [Google Scholar] [CrossRef] [Green Version]
- Ahn, D.S.; Fukuda, N.; Geissel, H.; Inabe, N.; Iwasa, N.; Kubo, T.; Kusaka, K.; Morrissey, D.J.; Murai, D.; Nakamura, T.; et al. Location of the neutron dripline at fluorine and neon. Phys. Rev. Lett. 2019, 123, 212501. [Google Scholar] [CrossRef]
- Bagchi, S.; Kanungo, R.; Tanaka, Y.K.; Geissel, H.; Doornenbal, P.; Horiuchi, W.; Hagen, G.; Suzuki, T.; Tsunoda, N.; Ahn, D.S.; et al. Two-neutron halo is unveiled in 29F. Phys. Rev. Lett. 2020, 124, 222504. [Google Scholar] [CrossRef] [PubMed]
- Revel, A.; Sorlin, O.; Marqués, F.M.; Kondo, Y.; Kahlbow, J.; Nakamura, T.; Orr, N.A.; Nowacki, F.; Tostevin, J.A.; Yuan, C.X.; et al. Extending the southern shore of the island of inversion to 28F. Phys. Rev. Lett. 2020, 124, 152502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.; Audi, G.; Kondev, F.; Huang, W.; Naimi, S.; Xu, X. The AME2016 atomic mass evaluation (II). Tables, graphs and references. Chin. Phys. C 2017, 41, 030003. [Google Scholar] [CrossRef]
- Ekström, A.; Baardsen, G.; Forssén, C.; Hagen, G.; Hjorth-Jensen, M.; Jansen, G.R.; Machleidt, R.; Nazarewicz, W.; Papenbrock, T.; Sarich, J.; et al. Optimized chiral nucleon-nucleon interaction at next-to-next-to-leading order. Phys. Rev. Lett. 2013, 110, 192502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fossez, K.; Rotureau, J.; Michel, N.; Nazarewicz, W. Continuum effects in neutron-drip-line oxygen isotopes. Phys. Rev. C 2017, 96, 024308. [Google Scholar] [CrossRef]
- Stroberg, S.R.; Hergert, H.; Holt, J.D.; Bogner, S.K.; Schwenk, A. Ground and excited states of doubly open-shell nuclei from ab initio valence-space Hamiltonians. Phys. Rev. C 2016, 93, 051301. [Google Scholar] [CrossRef] [Green Version]
- Otsuka, T.; Suzuki, T.; Holt, J.D.; Schwenk, A.; Akaishi, Y. Three-body forces and the limit of oxygen isotopes. Phys. Rev. Lett. 2010, 105, 032501. [Google Scholar] [CrossRef] [Green Version]
- Utsuno, Y.; Otsuka, T.; Mizusaki, T.; Honma, M. Varying shell gap and deformation in N ∼ 20 unstable nuclei studied by the Monte Carlo shell model. Phys. Rev. C 1999, 60, 054315. [Google Scholar] [CrossRef]
- Stroberg, S.R.; Holt, J.D.; Schwenk, A.; Simonis, J. Ab initio limits of atomic nuclei. Phys. Rev. Lett. 2021, 126, 022501. [Google Scholar] [CrossRef]
- Hammer, H.W.; Nogga, A.; Schwenk, A. Colloquium: Three-body forces: From cold atoms to nuclei. Rev. Mod. Phys. 2013, 85, 197–217. [Google Scholar] [CrossRef] [Green Version]
- Hammer, H.W.; König, S.; van Kolck, U. Nuclear effective field theory: Status and perspectives. Rev. Mod. Phys. 2020, 92, 025004. [Google Scholar] [CrossRef]
- Grigorenko, L.V.; Mukha, I.G.; Scheidenberger, C.; Zhukov, M.V. Two-neutron radioactivity and four-nucleon emission from exotic nuclei. Phys. Rev. C 2011, 84, 021303. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Xu, F.R.; Hu, B.S.; Li, J.G. Perturbation calculations of nucleon–nucleon effective interactions in the Hartree–Fock basis. J. Phys. G Nucl. Part. Phys. 2019, 46, 055104. [Google Scholar] [CrossRef]
- Tsunoda, N.; Otsuka, T.; Takayanagi, K.; Shimizu, N.; Suzuki, T.; Utsuno, Y.; Yoshida, S.; Ueno, H. The impact of nuclear shape on the emergence of the neutron dripline. Nature 2020, 587, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Wienholtz, F.; Beck, D.; Blaum, K.; Borgmann, C.; Breitenfeldt, M.; Cakirli, R.B.; George, S.; Herfurth, F.; Holt, J.; Kowalska, M.; et al. Masses of exotic calcium isotopes pin down nuclear forces. Nature 2013, 498, 346. [Google Scholar] [CrossRef] [PubMed]
- Steppenbeck, D.; Takeuchi, S.; Aoi, N.; Doornenbal, P.; Matsushita, M.; Wang, H.; Baba, H.; Fukuda, N.; Go, S.; Honma, M.; et al. Evidence for a new nuclear ‘magic number’from the level structure of 54 Ca. Nature 2013, 502, 207. [Google Scholar] [CrossRef]
- Michimasa, S.; Kobayashi, M.; Kiyokawa, Y.; Ota, S.; Ahn, D.S.; Baba, H.; Berg, G.P.A.; Dozono, M.; Fukuda, N.; Furuno, T.; et al. Magic nature of neutrons in 54Ca: First mass measurements of 55–57Ca. Phys. Rev. Lett. 2018, 121, 022506. [Google Scholar] [CrossRef] [Green Version]
- Riley, L.A.; McPherson, D.M.; Agiorgousis, M.L.; Baugher, T.R.; Bazin, D.; Bowry, M.; Cottle, P.D.; DeVone, F.G.; Gade, A.; Glowacki, M.T.; et al. Octupole strength in the neutron-rich calcium isotopes. Phys. Rev. C 2016, 93, 044327. [Google Scholar] [CrossRef] [Green Version]
- Hergert, H.; Bogner, S.K.; Morris, T.D.; Binder, S.; Calci, A.; Langhammer, J.; Roth, R. Ab initio multireference in-medium similarity renormalization group calculations of even calcium and nickel isotopes. Phys. Rev. C 2014, 90, 041302. [Google Scholar] [CrossRef] [Green Version]
- Holt, J.D.; Menéndez, J.; Simonis, J.; Schwenk, A. Three-nucleon forces and spectroscopy of neutron-rich calcium isotopes. Phys. Rev. C 2014, 90, 024312. [Google Scholar] [CrossRef] [Green Version]
- Coraggio, L.; Covello, A.; Gargano, A.; Itaco, N. Realistic shell-model calculations for isotopic chains “north-east” of 48Ca in the (N,Z) plane. Phys. Rev. C 2014, 89, 024319. [Google Scholar] [CrossRef]
- Neufcourt, L.; Cao, Y.; Nazarewicz, W.; Olsen, E.; Viens, F. Neutron drip line in the Ca region from Bayesian model averaging. Phys. Rev. Lett. 2019, 122, 062502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coraggio, L.; De Gregorio, G.; Gargano, A.; Itaco, N.; Fukui, T.; Ma, Y.Z.; Xu, F.R. Shell-model study of calcium isotopes toward their drip line. Phys. Rev. C 2020, 102, 054326. [Google Scholar] [CrossRef]
- Tarasov, O.B.; Ahn, D.S.; Bazin, D.; Fukuda, N.; Gade, A.; Hausmann, M.; Inabe, N.; Ishikawa, S.; Iwasa, N.; Kawata, K.; et al. Discovery of 60Ca and implications for the stability of 70Ca. Phys. Rev. Lett. 2018, 121, 022501. [Google Scholar] [CrossRef] [Green Version]
- Woodward, C.J.; Tribble, R.E.; Tanner, D.M. Mass of 16Ne. Phys. Rev. C 1983, 27, 27–30. [Google Scholar] [CrossRef] [Green Version]
- KeKelis, G.J.; Zisman, M.S.; Scott, D.K.; Jahn, R.; Vieira, D.J.; Cerny, J.; Ajzenberg-Selove, F. Masses of the unbound nuclei 16Ne, 15F, and 12O. Phys. Rev. C 1978, 17, 1929–1938. [Google Scholar] [CrossRef]
- Brown, K.W.; Charity, R.J.; Sobotka, L.G.; Chajecki, Z.; Grigorenko, L.V.; Egorova, I.A.; Parfenova, Y.L.; Zhukov, M.V.; Bedoor, S.; Buhro, W.W.; et al. Observation of long-range three-body coulomb effects in the decay of 16Ne. Phys. Rev. Lett. 2014, 113, 232501. [Google Scholar] [CrossRef] [Green Version]
- Li, J.G.; Michel, N.; Zuo, W.; Xu, F.R. Reexamining the variational two-particle reduced density matrix for nuclear systems. Phys. Rev. C 2021, 103, 064324. [Google Scholar] [CrossRef]
- Aksyutina, Y.; Johansson, H.; Adrich, P.; Aksouh, F.; Aumann, T.; Boretzky, K.; Borge, M.; Chatillon, A.; Chulkov, L.; Cortina-Gil, D.; et al. Lithium isotopes beyond the drip line. Phys. Lett. B 2008, 666, 430–434. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Ma, Y.; Michel, N.; Hu, B.; Sun, Z.; Zuo, W.; Xu, F. Recent Progress in Gamow Shell Model Calculations of Drip Line Nuclei. Physics 2021, 3, 977-997. https://doi.org/10.3390/physics3040062
Li J, Ma Y, Michel N, Hu B, Sun Z, Zuo W, Xu F. Recent Progress in Gamow Shell Model Calculations of Drip Line Nuclei. Physics. 2021; 3(4):977-997. https://doi.org/10.3390/physics3040062
Chicago/Turabian StyleLi, Jianguo, Yuanzhuo Ma, Nicolas Michel, Baishan Hu, Zhonghao Sun, Wei Zuo, and Furong Xu. 2021. "Recent Progress in Gamow Shell Model Calculations of Drip Line Nuclei" Physics 3, no. 4: 977-997. https://doi.org/10.3390/physics3040062
APA StyleLi, J., Ma, Y., Michel, N., Hu, B., Sun, Z., Zuo, W., & Xu, F. (2021). Recent Progress in Gamow Shell Model Calculations of Drip Line Nuclei. Physics, 3(4), 977-997. https://doi.org/10.3390/physics3040062