(2 + 1)-Maxwell Equations in Split Quaternions
Abstract
:1. Introduction
2. Split Quaternions
2.1. Vector-Type Rotations
2.2. Maximal Velocity and Uncertainty Principle
- at a starting moment can be set to zero together with t;
- has independent increments for every ;
- is normally distributed with mean 0 and have some finite variance;
- has continuous paths in t.
3. Quaternions and Triality
3.1. Vector and Spinor Transformations
3.2. Triality Algebra
4. Quaternionic Analyticity and (2 + 1) Electrodynamics
4.1. Quaternionic Gradient Operator
4.2. Analyticity Condition
4.3. Quaternionic Dirac Equation
4.4. (2 + 1) Maxwell Fields
- The Coulomb force in (2 + 1) space must change, the electric field of a point charge now falls off as the inverse of the distance which entails a logarithmic electrostatic potential. This dramatically alters the phenomenology, since the attractive potential between opposite charges becomes confining, i.e., an infinite amount of energy would be required to extract the electron from the hydrogen atom, for example.
- Part of the vector calculus must change. The absence of a right-hand rule is obvious and the magnetic field must be qualitatively different; it turns out that it cannot be a vector any more—it becomes a scalar field.
- One of the main new features is connected to the retarded potentials. The reason for this is directly linked to the Huygens principle, which states that every point on a wave front is itself the source of (spherical) waves and relies on the fact that all waves propagate with a single speed. In (2 + 1) space, however, a solution to the wave equation can be understood as a superposition of waves travelling with speeds ranging from zero to the maximum value c, with which the first wave front travels.
4.5. First-Order Maxwell System
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Matrix Representation of Split Quaternions
- the norm of a quaternion is expressed by the determinant of associated matrix,
- the spur (trace) of the associated matrices is equal to ;
- the conjugated quaternion is associated with the quaternionic matrices,
Appendix A.1. SL(2,R) and SU(1,1) Groups
Appendix A.2. Complex-like Representation
Appendix B. Classification of Split Quaternions
Appendix B.1. Scalar and Vector Parts
Appendix B.2. The Polar Form
- Every space-like quaternion can be written in the form:
- Every time-like quaternion with the space-like vector part can expressed asagain is a unit space-like three vector as in Equations (A34).
- Every time-like quaternion with the time-like vector part can be written in the form:
Appendix B.3. Exponential Maps
Appendix C. Matrix Representation of (2 + 2)-Rotations
Quaternionic Basis in Matrix Representation
Appendix D. Quaternionic Rotations
Appendix D.1. Compact Rotations
Appendix D.2. Boosts
Appendix D.3. Boosts by Extra ‘Time’
Appendix E. Decomposition of Split Quaternions
Appendix E.1. Idempotents
Appendix E.2. Nilpotents
Appendix E.3. Matrix Representation of Zero Divisors
Appendix E.4. Left Decomposition
Appendix E.5. Right Decomposition
Appendix F. Quaternionic Spinors
Appendix F.1. Matrix Representation
Appendix F.2. Quaternions in Cone Basis
Appendix F.3. Spinor Basis
Appendix F.4. 3-ψ Rule
References
- Gogberashvili, M. Split-quaternion analyticity and (2 + 1)-electrodynamics. PoS 2021, Regio2020, 007. [Google Scholar] [CrossRef]
- Gogberashvili, M. Standard Model Particles from Split Octonions. Prog. Phys. 2016, 12, 30–33. [Google Scholar]
- Gogberashvili, M.; Sakhelashvili, O. Geometrical applications of split octonions. Adv. Math. Phys. 2015, 2015, 196708. [Google Scholar] [CrossRef] [Green Version]
- Gogberashvili, M. Octonionic electrodynamics. J. Phys. A Math. Gen. 2006, 39, 7099. [Google Scholar] [CrossRef]
- Gogberashvili, M. Octonionic version of Dirac equations. Int. J. Mod. Phys. A 2006, 21, 3513–3523. [Google Scholar] [CrossRef] [Green Version]
- Gogberashvili, M. Octonionic geometry. Adv. Appl. Clifford Algebras 2005, 15, 55–66. [Google Scholar] [CrossRef] [Green Version]
- Gogberashvili, M. Observable algebra. arXiv 2002, arXiv:hep-th/0212251. [Google Scholar]
- Gogberashvili, M. Split quaternions and particles in (2 + 1)-space. Eur. Phys. J. C 2014, 74, 3200. [Google Scholar] [CrossRef] [Green Version]
- Schafer, R.D. An Introduction to Nonassociative Algebras; Dover: New York, NY, USA, 2017; Available online: https://www.gutenberg.org/ebooks/25156 (accessed on 20 February 2022).
- Dixon, G.M. Division Algebras: Octonions Quaternions Complex Numbers and the Algebraic Design of Physics; Springer Science & Business Media: Boston, MA, USA, 1994. [Google Scholar] [CrossRef]
- Conway, J.H.; Smith, D.A. On Quaternions and Octonions: Their Geometry, Arithmetic, and Symmetry; AK Peters/CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar] [CrossRef]
- Gsponer, A.; Hurni, J.P. Quaternions in mathematical physics. 1. Alphabetical bibliography. arXiv 2005, arXiv:math-ph/0510059. [Google Scholar]
- Hanson, A.J. Visualizing Quaternions; Morgan Kaufmann/Elsevier: San Francisco, CA, USA, 2006. [Google Scholar]
- Altmann, S. Rotations, Quaternions, and Double Groups; Claredon Press: Oxford, UK, 1986. [Google Scholar]
- Adler, S.L. Quaternionic Quantum Mechanics and Quantum Fields; Oxford Univercity Press: Oxford, UK, 1995. [Google Scholar]
- Kuipers, J.B. Quaternions and Rotation Sequences; Princeton University Press: Princeton, NJ, USA, 1999. [Google Scholar]
- Chanyal, B.C. Quaternionic approach on the Dirac–Maxwell, Bernoulli and Navier–Stokes equations for dyonic fluid plasma. Int. J. Mod. Phys. A 2019, 34, 1950202. [Google Scholar] [CrossRef]
- Chanyal, B.C.; Karnatak, S. A comparative study of quaternionic rotational Dirac equation and its interpretation. Int. J. Geom. Meth. Mod. Phys. 2020, 17, 2050018. [Google Scholar] [CrossRef]
- Castro Neto, A.H.; Guinea, G.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162. [Google Scholar] [CrossRef] [Green Version]
- Banados, M.; Henneaux, M.; Teitelboim, C.; Zanelli, J. Geometry of the (2 + 1) black hole. Phys. Rev. D 1993, 48, 1506–1525. [Google Scholar] [CrossRef] [Green Version]
- Carlip, S. Quantum Gravity in 2 + 1 Dimensions; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar] [CrossRef]
- Witten, E. Three-dimensional gravity revisited. arXiv 2007, arXiv:0706.3359. [Google Scholar]
- Witten, E. 2 + 1 dimensional gravity as an exactly soluble system. Nucl. Phys. B 1988, 311, 46–78. [Google Scholar] [CrossRef]
- Achucarro, A.; Townsend, P.K. A Chern-Simons action for three-dimensional anti-de Sitter supergravity theories. Phys. Lett. B 1986, 180, 89–92. [Google Scholar] [CrossRef]
- Stillwell, J. Mathematics and Its History; Springer: New York, NY, USA, 1989. [Google Scholar] [CrossRef]
- Needham, T. Visual Complex Analysis; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Khrennikov, A. Beyond Quantum; Jenny Stanford Publishing: New York, NY, USA, 2014. [Google Scholar] [CrossRef] [Green Version]
- Lindgren, J.; Liukkonen, J. The Heisenberg uncertainty principle as an endogenous equilibrium property of stochastic optimal control systems in quantum mechanics. Symmetry 2020, 12, 1533. [Google Scholar] [CrossRef]
- Baez, J.C.; Huerta, J. Division algebras and supersymmetry I. Proc. Symp. Pure Math. 2010, 81, 65–80. [Google Scholar]
- De Andrade, M.A.; Rojas, M.; Toppan, F. The Signature triality of Majorana-Weyl space-times. Int. J. Mod. Phys. A 2001, 16, 4453–4479. [Google Scholar] [CrossRef] [Green Version]
- Anastasiou, A.; Borsten, L.; Duff, M.J.; Hughes, L.J.; Nagy, S. Super Yang–Mills, division algebras and triality. JHEP 2014, 8, 80. [Google Scholar] [CrossRef] [Green Version]
- Deavours, C.A. The quaternion calculus. Am. Math. Mon. 1973, 80, 995–1008. [Google Scholar] [CrossRef]
- Sudbery, A. Quaternionic analysis. Math. Proc. Camb. Philos. Soc. 1979, 85, 199–225. [Google Scholar] [CrossRef] [Green Version]
- Weisz, J.F. Comments on mathematical analysis over quaternions. Int. J. Math. Edu. Sci. Tech. 1991, 22, 499–506. [Google Scholar] [CrossRef]
- Fueter, R. Die Funktionentheorie der Differentialgleichungen Δu = 0 und ΔΔu = 0 mit vier reellen Variablen. Comment. Math. Helv. 1934, 7, 307–330. [Google Scholar] [CrossRef]
- Fueter, R. Über die analytische Darstellung der regulären Funktionen einer Quaternionenvariablen. Comment. Math. Helv. 1935, 8, 371–378. [Google Scholar] [CrossRef]
- Mandic, D.P.; Jahanchahi, C.; Took, C.C. A quaternion gradient operator and its applications. IEEE Signal Process. Lett. 2011, 18, 47–50. [Google Scholar] [CrossRef]
- Gentili, G.; Struppa, D.C. A new approach to Cullen-regular functions of a quaternionic variable. C. R. Math. Acad. Sci. Paris 2006, 342, 741–744. [Google Scholar] [CrossRef]
- Gentili, G.; Struppa, D.C. A new theory of regular functions of a quaternionic variable. Adv. Math. 2007, 216, 279–301. [Google Scholar] [CrossRef] [Green Version]
- De Leo, S.; Rotelli, P.P. Quaternionic analyticity. App. Math. Lett. 2003, 16, 1077–1081. [Google Scholar] [CrossRef]
- Frenkel, I.; Libine, M. Split quaternionic analysis and separation of the series for SL(2,R) and SL(2,C)/SL(2,R). Adv. Math. 2011, 228, 678–763. [Google Scholar] [CrossRef] [Green Version]
- Boito, D.; de Andrade, L.N.S.; de Sousa, G.; Gama, R.; London, C.Y.M. On Maxwell’s electrodynamics in two spatial dimensions. Rev. Bras. Ensino Fís. 2020, 42, e20190323. [Google Scholar] [CrossRef]
- Lapidus, I.R. One- and two-dimensional hydrogen atoms. Am. J. Phys. 1981, 49, 807. [Google Scholar] [CrossRef]
- Lapidus, I.R. Classical electrodynamics in a universe with two space dimensions. Am. J. Phys. 1982, 50, 155–157. [Google Scholar] [CrossRef]
- Asturias, F.J.; Aragón, S.R. The hydrogenic atom and the period table of the elements in two spatial dimensions. Am. J. Phys. 1985, 53, 893–899. [Google Scholar] [CrossRef]
- Moses, H.E. A spinor representation of Maxwell’s equations. Nuovo Cim. Suppl. 1958, 7, 1–18. [Google Scholar] [CrossRef]
- Moses, H.E. Solution of Maxwell’s equations in terms of a spinor notation: The direct and inverse problem. Phys. Rev. 1959, 113, 1670–1678. [Google Scholar] [CrossRef]
- Maxwell, J.C. Treatise on Electricity and Magnetism; Dover: New York, NY, USA, 1954. [Google Scholar]
- Imaeda, K. A new formulation of classical electrodynamics. Nuovo Cim. 1976, 32, 138–162. [Google Scholar] [CrossRef]
- Gürlebeck, K.; Sprössig, W. Quaternionic and Clifford Calculus for Physicists and Engineers; Wiley & Sons: Chichester, UK, 1997. [Google Scholar]
- Özdemir, M.; Ergin, A.A. Rotations with unit timelike quaternions in Minkowski 3-space. J. Geom. Phys. 2006, 56, 322–336. [Google Scholar] [CrossRef]
- Kula, L.; Yayli, Y. Split quaternions and rotations in semi Euclidean space . J. Korean Math. Soc. 2007, 44, 1313–1327. [Google Scholar] [CrossRef] [Green Version]
- Schray, J. The General classical solution of the superparticle. Class. Quant. Grav. 1996, 13, 27–38. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gogberashvili, M. (2 + 1)-Maxwell Equations in Split Quaternions. Physics 2022, 4, 329-363. https://doi.org/10.3390/physics4010023
Gogberashvili M. (2 + 1)-Maxwell Equations in Split Quaternions. Physics. 2022; 4(1):329-363. https://doi.org/10.3390/physics4010023
Chicago/Turabian StyleGogberashvili, Merab. 2022. "(2 + 1)-Maxwell Equations in Split Quaternions" Physics 4, no. 1: 329-363. https://doi.org/10.3390/physics4010023
APA StyleGogberashvili, M. (2022). (2 + 1)-Maxwell Equations in Split Quaternions. Physics, 4(1), 329-363. https://doi.org/10.3390/physics4010023