The Status and Future of Color Transparency and Nuclear Filtering
Abstract
:1. What Is Color Transparency?
1.1. Color Transparency Crosses Many Fields
1.2. Survival of the Smallest
2. Highlights of Two Experiments
3. Models of Short and Not-So-Short-Distance Processes
3.1. Momentum vs. Coordinate Space Descriptions
- Perturbative QCD (pQCD) describes interactions of quarks and gluons at “large” momentum transfers squared GeV2.
- pQCD descriptions of hadron scattering always involve unknown elements, which are the wave functions of quarks and gluons in the hadrons. These wave functions are field-theoretical entities that cannot be developed from a non-relativistic few quark picture.
- All models of large momentum transfer involve a strictly limited number of participating quarks. The lowest order building block is quark-quark (or quark-antiquark) scattering via one-gluon exchange. Models differ in how the building blocks are put together.
- Amplitudes are calculated by integrating over internal momenta. When models are verbally described as “involving this or that process,” it is really a translation of an approximation concentrating on a momentum region that can be identified with the process. A short-distance model is one that actually asserts certain regions of high momentum transfer dominate the calculation. A not-so-short-distance process may get contributions from kinematic regions of high momentum transfer, along with other regions whose scale is set by the wave function of the hadron.
- With this information, models relevant to color transparency can be understood with the real-space cartoons of Figure 3. In Figure 3, top, a short-distance model (Figure 3, top left) has emphasis on participating quarks meeting at a hard scattering (red dot) with points separated spatially by order . An endpoint model (Figure 3, top right) considers a single hard scattering, with soft, long wavelength quarks not participating, and merging from one struck hadron to another. This process happens to have the same “quark counting” rules as a short-distance process, because finding soft, non-participating quarks is rare in proportion to how many are soft [20]. A Landshoff process (Figure 3 (bottom)) has quarks acting completely independently, and flying off at random. The coincidence of final state quarks accidentally traveling in parallel to form a final state hadron is calculated from the phase space integral. Perhaps surprisingly, this process dominates the processes , even when radiative (Sudakov) factors are applied to account for the lack of final state radiation [21,22,23].
3.2. More about the Endpoint Process
4. The GPD Domain: Near Forward Exclusive Electroproduction and Related Processes
5. Color Transparency for Backward Scattering Processes
5.1. Backward Electroproduction
5.2. Electromagnetic Processes at ANDA
5.3. Color Transparency in Backward Processes with Meson Beams
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Perkins, D. Ionization at the origin of electron pairs, and the lifetime of the neutral pion. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1955, 46, 1146–1148. [Google Scholar] [CrossRef]
- Mueller, A.H. Topics in high-energy perturbative QCD including interactions with nuclear matter. In Proceedings of the 17th Rencontres de Moriond on Elementary Particle Physics: I. Electroweak Interactions and Grand Unified Theories, Les Arcs, France, 14–26 March 1982; Tran Than Van, J., Ed.; Editions Frontieres: Gif-Sur-Yvette, France, 1988; pp. 13–43. [Google Scholar]
- Brodsky, S.J. Testing quantum chromodynamics. In Proceedings of the XIII International Symposium on Multiparticle Dynamics, Volendam, The Netherlands, 6–11 June 1982; Kittel, W., Metzger, W., Stergiou, A., Eds.; World Scientific Co.: Singapore, 1983; pp. 963–1002. [Google Scholar]
- Farrar, G.R.; Jackson, D.R. The pion form-factor. Phys. Rev. Lett. 1979, 43, 246–249. [Google Scholar] [CrossRef]
- Efremov, A.V.; Radyushkin, A.V. Factorization and asymptotical behavior of pion form-factor in QCD. Phys. Lett. B 1980, 94, 245–250. [Google Scholar] [CrossRef]
- Lepage, G.P.; Brodsky, S.J. Exclusive processes in perturbative quantum chromodynamics. Phys. Rev. D 1980, 22, 2157–2198. [Google Scholar] [CrossRef] [Green Version]
- Jain, P.; Pire, B.; Ralston, J.P. Quantum color transparency and nuclear filtering. Phys. Rep. 1996, 271, 67–179. [Google Scholar] [CrossRef] [Green Version]
- Makins, N.; Ent, R.; Chapman, M.S.; Hansen, J.O.; Lee, K.; Milner, R.; Nelson, J.; Arnold, R.; Bosted, P.; Keppel, C.E.; et al. Momentum transfer dependence of nuclear transparency from the quasielastic 12C(e,e′p) reaction. Phys. Rev. Lett. 1994, 72, 1986–1989. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, T.G.; Lorenzon, W.; Arrington, J. A-dependence of nuclear transparency in quasielastic A(e,e′p) at high Q2. Phys. Lett. B 1995, 351, 87–92. [Google Scholar] [CrossRef] [Green Version]
- Abbott, D.; Ahmidouch, A.; Amatuni, T.A.; Armstrong, C.; Arrington, J.; Assamagan, K.A.; Bailey, K.; Baker, O.K.; Barrow, S.; Beard, K.; et al. Quasifree (e,e′p) reactions and proton propagation in nuclei. Phys. Rev. Lett. 1998, 80, 5072–5076. [Google Scholar] [CrossRef] [Green Version]
- Garrow, K.; McKee, D.; Ahmidouch, A.; Armstrong, C.S.; Arrington, J.; Asaturyan, R.; Avery, S.K.; Baker, K.; Beck, D.H.; Blok, H.P.; et al. Nuclear transparency from quasielastic A(e,e′p) reactions up to Q2 = 8.1 (GeV/c)2. Phys. Rev. C 2002, 66, 044613. [Google Scholar] [CrossRef] [Green Version]
- Bhetuwal, D. et al.; [Hall C Collaboration] Ruling out color transparency in quasielastic 12C(e,e′p) up to Q2 of 14.2 (GeV/c)2. Phys. Rev. Lett. 2021, 126, 082301. [Google Scholar] [CrossRef]
- Carroll, A.S.; Barton, D.S.; Bunce, G.; Gushue, S.; Makdisi, Y.I.; Heppelmann, S.; Courant, H.; Fang, G.; Heller, K.J.; Marshak, M.L.; et al. Nuclear transparency to large angle pp elastic scattering. Phys. Rev. Lett. 1988, 61, 1698–1701. [Google Scholar] [CrossRef] [PubMed]
- Farrar, G.R.; Liu, H.; Frankfurt, L.L.; Strikman, M.I. Transparency in nuclear quasiexclusive processes with large momentum transfer. Phys. Rev. Lett. 1988, 61, 686–689. [Google Scholar] [CrossRef] [PubMed]
- Asryan, G.; Barton, D.S.; Buktoyarova, N.; Bunce, G.; Carroll, A.S.; Gushue, S.; Makdisi, Y.I.; Roser, T.; Tanaka, M.; Baturin, V.; et al. Nuclear transparency in quasielastic A(p,2p) reactions. Phys. Rev. C 2004, 70, 015208. [Google Scholar] [CrossRef] [Green Version]
- Ralston, J.P.; Pire, B. Fluctuating proton size and oscillating nuclear transparency. Phys. Rev. Lett. 1988, 61, 1823–1926. [Google Scholar] [CrossRef]
- Pire, B.; Ralston, J.P. Fixed angle elastic scattering and the chromo-Coulomb phase shift. Phys. Lett. B 1982, 117, 233–237. [Google Scholar] [CrossRef]
- Ralston, J.P.; Pire, B. Oscillatory scaling violation and the quantum chromodynamics Coulomb phase. Phys. Rev. Lett. 1982, 49, 1605–1608. [Google Scholar] [CrossRef]
- Donnachie, A.; Landshoff, P.V. Elastic scattering at large t. Z. Phys. C 1979, 2, 55–62, Erratum in Z. Phys. C 1979, 2, 372. https://doi.org/10.1007/BF01545902. [Google Scholar] [CrossRef]
- Dagaonkar, S.K.; Jain, P.; Ralston, J.P. Uncovering the scaling laws of hard exclusive hadronic processes in a comprehensive endpoint model. Eur. Phys. J. C 2014, 74, 3000. [Google Scholar] [CrossRef] [Green Version]
- Mueller, A.H. Perturbative QCD at high-energies. Phys. Rep. 1981, 73, 237–368. [Google Scholar] [CrossRef]
- Botts, J.; Sterman, G.F. Hard elastic scattering in QCD: Leading behavior. Nucl. Phys. B 1989, 325, 62–100. [Google Scholar] [CrossRef]
- Li, H.N.; Sterman, G.F. The Perturbative pion form-factor with Sudakov suppression. Nucl. Phys. B 1992, 381, 129–140. [Google Scholar] [CrossRef]
- Feynman, R.P. Very high-energy collisions of hadrons. Phys. Rev. Lett. 1969, 23, 1415–1417. [Google Scholar] [CrossRef] [Green Version]
- Brodsky, S.J.; Lepage, G.P. Helicity selection rules and tests of gluon spin in exclusive quantum-chromodynamic processes. Phys. Rev. D 1981, 24, 2848–2855. [Google Scholar] [CrossRef]
- Dagaonkar, S.; Jain, P.; Ralston, J.P. The Dirac form factor predicts the Pauli form factor in the endpoint model. Eur. Phys. J. C 2016, 76, 368. [Google Scholar] [CrossRef] [Green Version]
- Jain, P.; Ralston, J.P. Systematic analysis method for color transparency experiments. Phys. Rev. D 1993, 48, 1104–1111. [Google Scholar] [CrossRef] [Green Version]
- Diehl, M. Generalized parton distributions. Phys. Rep. 2003, 388, 41–277. [Google Scholar] [CrossRef] [Green Version]
- Kumericki, K.; Liuti, S.; Moutarde, H. GPD phenomenology and DVCS fitting: Entering the high-precision era. Eur. Phys. J. A 2016, 52, 157. [Google Scholar] [CrossRef] [Green Version]
- Clasie, B.; Qian, X.; Arrington, J.; Asaturyan, R.; Benmokhtar, F.; Boeglin, W.; Bosted, P.; Bruell, A.; Christy, M.E.; Chudakov, E.; et al. Measurement of nuclear transparency for the A(e,e′π+) reaction. Phys. Rev. Lett. 2007, 99, 242502. [Google Scholar] [CrossRef] [Green Version]
- El Fassi, L.; Zana, L.; Hafidi, K.; Holtrop, M.; Mustapha, B.; Brooks, W.K.; Hakobyan, H.; Zhenga, X.; Adhikari, K.P.; Adikaram, D.; et al. Evidence for the onset of color transparency in ρ0 electroproduction off nuclei. Phys. Lett. B 2012, 712, 326–330. [Google Scholar] [CrossRef]
- Cosyn, W.; Martinez, M.C.; Ryckebusch, J. Color transparency and short-range correlations in exclusive pion photo- and electroproduction from nuclei. Phys. Rev. C 2008, 77, 034602. [Google Scholar] [CrossRef] [Green Version]
- Defurne, M. et al.; [Jefferson Lab Hall A Collaboration] Rosenbluth separation of the π0 electroproduction cross section. Phys. Rev. Lett. 2016, 117, 262001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dlamini, M. et al.; [Jefferson Lab Hall A Collaboration] Deep exclusive electroproduction of π0 at high Q2 in the quark valence regime. Phys. Rev. Lett. 2021, 127, 152301. [Google Scholar] [CrossRef] [PubMed]
- Berger, E.R.; Diehl, M.; Pire, B. Probing generalized parton distributions in πN→l+l−N. Phys. Lett. B 2001, 523, 265–272. [Google Scholar] [CrossRef] [Green Version]
- Sawada, T.; Chang, W.C.; Kumano, S.; Peng, J.C.; Sawada, S.; Tanaka, K. Accessing proton generalized parton distributions and pion distribution amplitudes with the exclusive pion-induced Drell-Yan process at J-PARC. Phys. Rev. D 2016, 93, 114034. [Google Scholar] [CrossRef] [Green Version]
- Gayoso, C.A.; Bibrzycki, Ł.; Diehl, S.; Heppelmann, S.; Higinbotham, D.W.; Huber, G.M.; Kay, S.J.; Klein, S.R.; Laget, J.M.; Li, W.B.; et al. Progress and opportunities in backward angle (u-channel) physics. Eur. Phys. J. A 2021, 57, 342. [Google Scholar] [CrossRef]
- Frankfurt, L.; Pobylitsa, P.; Polyakov, M.V.; Strikman, M. Hard exclusive pseudoscalar meson electroproduction and spin structure of a nucleon. Phys. Rev. D 1999, 60, 014010. [Google Scholar] [CrossRef] [Green Version]
- Pire, B.; Szymanowski, L. Hadron annihilation into two photons and backward VCS in the scaling regime of QCD. Phys. Rev. D 2005, 71, 111501. [Google Scholar] [CrossRef] [Green Version]
- Pire, B.; Szymanowski, L. QCD analysis of N→γ*π in the scaling limit. Phys. Lett. B 2005, 622, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Pire, B.; Semenov-Tian-Shansky, K.; Szymanowski, L. Transition distribution amplitudes and hard exclusive reactions with baryon number transfer. Phys. Rep. 2021, 940, 1–121. [Google Scholar] [CrossRef]
- Park, K.; Guidal, M.; Gothe, R.W.; Pire, B.; Semenov-Tian-Shansky, K.; Laget, J.M.; Adhikari, K.P.; Adhikari, S.; Akbar, Z.; Avakian, H.; et al. Hard exclusive pion electroproduction at backward angles with CLAS. Phys. Lett. 2018, B780, 340–345. [Google Scholar] [CrossRef]
- Li, W.B. et al.; [Jefferson Lab Fπ Collaboration] Unique access to u-channel physics: Exclusive backward-angle omega meson electroproduction. Phys. Rev. Lett. 2019, 123, 182501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diehl, S. et al.; [CLAS Collaboration] Extraction of beam-spin asymmetries from the hard exclusive π+ channel off protons in a wide range of kinematics. Phys. Rev. Lett. 2020, 125, 182001. [Google Scholar] [CrossRef] [PubMed]
- Huber, G.M.; Li, W.B.; Cosyn, W.; Pire, B. u-channel color transparency observables. Physics 2022, 4, 451–461. [Google Scholar] [CrossRef]
- Erni, W. et al.; [PandaCollaboration] Physics performance report for ANDA: Strong interaction studies with antiprotons. arXiv 2009, arXiv:0903.3905. [Google Scholar] [CrossRef]
- Lansberg, J.; Pire, B.; Semenov-Tian-Shansky, K.; Szymanowski, L. Accessing baryon to meson transition distribution amplitudes in meson production in association with a high invariant mass lepton pair at GSI-FAIR with ANDA. Phys. Rev. D 2012, 86, 114033, Erratum in Phys. Rev. D 2013, 87, 059902. https://doi.org/10.1103/PhysRevC.70.015208. [Google Scholar] [CrossRef] [Green Version]
- Pire, B.; Semenov-Tian-Shansky, K.; Szymanowski, L. Backward charmonium production in πN collisions. Phys. Rev. D 2017, 95, 034021. [Google Scholar] [CrossRef] [Green Version]
- Yu, B.G.; Kong, K.J. Features of ω photoproduction off proton target at backward angles: Role of nucleon Reggeon in u-channel with parton contributions. Phys. Rev. D 2019, 99, 014031. [Google Scholar] [CrossRef] [Green Version]
- Kaskulov, M.M.; Mosel, U. Deep exclusive charged π electroproduction above the resonance region. Phys. Rev. C 2010, 81, 045202. [Google Scholar] [CrossRef] [Green Version]
- Laget, J.M. Unitarity constraints on meson electroproduction at backward angles. Phys. Rev. C 2021, 104, 025202. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jain, P.; Pire, B.; Ralston, J.P. The Status and Future of Color Transparency and Nuclear Filtering. Physics 2022, 4, 578-589. https://doi.org/10.3390/physics4020038
Jain P, Pire B, Ralston JP. The Status and Future of Color Transparency and Nuclear Filtering. Physics. 2022; 4(2):578-589. https://doi.org/10.3390/physics4020038
Chicago/Turabian StyleJain, Pankaj, Bernard Pire, and John P. Ralston. 2022. "The Status and Future of Color Transparency and Nuclear Filtering" Physics 4, no. 2: 578-589. https://doi.org/10.3390/physics4020038
APA StyleJain, P., Pire, B., & Ralston, J. P. (2022). The Status and Future of Color Transparency and Nuclear Filtering. Physics, 4(2), 578-589. https://doi.org/10.3390/physics4020038