Isospin-Symmetry Breaking within the Nuclear Shell Model: Present Status and Developments
Abstract
:1. Introduction
1.1. Isospin Symmetry in Nuclear Structure
- For transitions (), the (reduced) matrix elements of analogue transitions in mirror nuclei or between respective analogue states should be identical, since they are governed only by the isovector term.
- In transitions between the states of the same isospin (), both isoscalar and isovector terms contribute, and the matrix element for analogue transitions within an isobaric multiplet exhibits a linear trend as a function of :
- Another specific rule can be established for electric dipole operator. In the lowest order of the long-wavelength approximation, the electric-dipole () operator is an isovector operator:Hence, transitions between the states of the same isospin () in nuclei are forbidden by the isospin symmetry because of the vanishing Clebsch–Gordan coefficient, (see Equation (11)).
1.2. Isospin-Symmetry Breaking
- class I () are charge-independent forces ;
- class II () are forces which break the charge independence, but preserve the charge symmetry of the two-nucleon system, ;
- class III () are charge-symmetry breaking forces, which vanish in the neutron-proton system, ;
- class IV () are forces which do not conserve the isospin of the two-nucleon system: .
2. Formalism
2.1. Phenomenological Approaches
2.2. Semi-Phenomenological Approaches
2.3. Microscopic Approaches
3. Structure and Decay of Neutron-Deficient Nuclei
3.1. IMME Coefficients for Masses and Excitation Spectra of Proton-Rich Nuclei
3.2. Isospin-Forbidden Decays
3.2.1. Isospin-Forbidden -Decay
3.2.2. Signatures of Isospin-Symmetry Breaking from Electromagnetic Transitions
3.2.3. -Delayed Proton, Diproton or Emission
4. Theoretical Isospin-Symmetry Breaking Corrections to Weak Processes in Nuclei
4.1. Superallowed Fermi -Decay
4.2. -Decay between Mirror States
4.3. Gamow–Teller Transitions in Mirror Nuclei
5. Astrophysical Applications
6. Conclusions and Perspectives
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CD | charge-dependent |
CKM | Cabbibo-Kobayashi-Moskawa |
CNO | carbon-nitrogen-oxygen |
CVC | conserved vector current |
, | electric-dipole, electric-quadrupole |
EFT | effective field theory |
F | Fermi |
GT | Gamow-Teller |
h.c. | hermitian congugate |
HF | Hartree–Fock |
IAS | isobaric analogue state |
IMME | isobaric-multiplet mass equation |
IMSRG | in-medium similarity-renormalization group |
INC | Isospin-nonconserving |
magnetic-dipole | |
MED | mirror energy difference |
NLO | next-to-next-to-next-to-leading |
nucleon–nucleon | |
rms | root mean square |
TED | triplet energy difference |
TMBE | two-body matrix element |
V–A | vector–axial vector |
WS | Wood-Saxon |
USD | universal shell |
EFT | chiral effective field theory |
three-nucleon |
References
- Heisenberg, W. Über den Bau der Atomkerne. I. Z. Phys. 1932, 77, 1–11. [Google Scholar] [CrossRef]
- Hesenberg, W. On the structure of atomic nuclei. I. In Nuclear Forces; Brink, D.M., Ed.; Pergamon Press: Oxford, UK, 1965; p. 214. [Google Scholar]
- Wigner, E. On the consequences of the symmetry of the nuclear Hamiltonian on the spectroscopy of nuclei. Phys. Rev. 1937, 51, 106–119. [Google Scholar] [CrossRef]
- Wigner, E. Isotopic spin—A quantum number for nuclei. In Proceedings of the Robert A. Welch Foundation Conference on Chemical Research; Milligan, W.O., Ed.; Welch Foundation: Houston, TX, USA, 1957; Volume 1, pp. 67–91. [Google Scholar]
- Lam, Y.H.; Blank, B.; Smirnova, N.A.; Antony, M.S.; Bueb, J. The isobaric multiplet mass equation for A≤71 revisited. At. Data Nucl. Data Tables 2013, 99, 680–703. [Google Scholar] [CrossRef]
- MacCormick, M.; Audi, G. Evaluated experimental isobaric analogue states from T=1/2 to T=3 and associated IMME coefficients. Nucl. Phys. A 2014, 925, 61–95. [Google Scholar] [CrossRef] [Green Version]
- Frank, A.; Jolie, A.; Van Isacker, P. Symmetries in Atomic Nuclei; Springer Science+Business Media, LLC: New York, NY, USA, 2009. [Google Scholar] [CrossRef] [Green Version]
- Warburton, E.K.; Weneser, J. The role of isospin in electromagnetic transitions. In Isospin in Nuclear Physics; Wilkinson, D.H., Ed.; North-Holland Publishing Co.: Amsterdam, The Netherlands, 1969; pp. 152–228. [Google Scholar]
- Wilkinson, D.H. (Ed.) Isospin in Nuclear Physics; North-Holland Publishing Co.: Amsterdam, The Netherlands, 1969. [Google Scholar]
- Harney, H.L.; Richter, A.; Weidenmüller, H.A. Breaking of isospin symmetry in compound-nucleus reactions. Rev. Mod. Phys. 1986, 58, 607–645. [Google Scholar] [CrossRef]
- Fujita, Y.; Rubio, B.; Gelletly, W. Spin–isospin excitations probed by strong, weak and electro-magnetic interactions. Prog. Part. Nucl. Phys. 2011, 66, 549–606. [Google Scholar] [CrossRef]
- Machleidt, R. The meson theory of nuclear forces and nuclear structure. In Advances in Nuclear Physics. Volume 19; Negele, J.W., Vogt, E., Eds.; Plenum Press: New York, NY, USA, 1989; Chapter 2. [Google Scholar] [CrossRef]
- Epelbaum, E.; Hammer, H.-W.; Meißner, U.-G. Modern theory of nuclear forces. Rev. Mod. Phys. 2009, 81, 1773–1825. [Google Scholar] [CrossRef]
- Nolen, J.A.; Schiffer, J.P. Coulomb energies. Ann. Rev. Nucl. Sci. 1969, 19, 471–526. [Google Scholar] [CrossRef]
- Ormand, W.E.; Brown, B.A. Empirical isospin-nonconserving Hamiltonians for shell-model calculations. Nucl. Phys. A 1989, 491, 1–23. [Google Scholar] [CrossRef]
- Nakamura, S.; Muto, K.; Oda, T. Isospin-forbidden beta decays in ls0d-shell nuclei. Nucl. Phys. A 1994, 575, 1–45. [Google Scholar] [CrossRef]
- Zuker, A.P.; Lenzi, S.M.; Martinez-Pinedo, G.; Poves, A. Isobaric multiplet yrast energies and isospin nonconserving forces. Phys. Rev. Lett. 2002, 89, 142502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henley, E.M.; Miller, G.A. Meson theory of charge-dependent nuclear forces. In Mesons in Nuclei. Volume 1; Rho, M., Wilkinson, D.H., Eds.; North-Holland Publishing Co.: Amsterdam, The Netherlands, 1979; pp. 405–434. [Google Scholar]
- Miller, G.A.; Nefkens, B.M.K.; Slaus, I. Charge symmetry, quarks and mesons. Phys. Rep. 1990, 194, 1–116. [Google Scholar] [CrossRef]
- van Kolck, U.L. Soft Physics: Applications of Effective Chiral Lagrangians to Nuclear Physics and Quark Models. Ph.D. Thesis, The University of Texas at Austn, Austin, TX, USA, 1993. Available online: https://www.proquest.com/openview/b885fad2126b5b81a16dca7d226f854a/ (accessed on 7 March 2023).
- Epelbaum, E. Few-nucleon forces and systems in chiral effective field theory. Prog. Part. Nucl. Phys. 2006, 57, 654–741. [Google Scholar] [CrossRef] [Green Version]
- Machleidt, R.; Entem, D.R. Chiral effective field theory and nuclear forces. Phys. Rep. 2011, 503, 024001. [Google Scholar] [CrossRef] [Green Version]
- Wiringa, R.B.; Pastore, S.; Pieper, S.C.; Miller, G.A. Charge-symmetry breaking forces and isospin mixing in 8Be. Phys. Rev. C 2013, 88, 044333. [Google Scholar] [CrossRef] [Green Version]
- Barrett, B.R.; Navrátil, P.; Vary, J.P. Ab initio no core shell model. Prog. Part. Nucl. Phys. 2013, 57, 654–741. [Google Scholar] [CrossRef] [Green Version]
- Maris, P.; Epelbaum, E.; Furnstahl, R.J.; Golak, J.; Hebeler, K.; Hüther, T.; Kamada, H.; Krebs, H.; Meißner, U.-G.; Melendez, J.A.; et al. Light nuclei with semilocal momentum-space regularized chiral interactions up to third order. Phys. Rev. C 2021, 103, 054001. [Google Scholar] [CrossRef]
- Caprio, M.A.; Fasano, P.J.; Maris, P.; McCoy, A.E. Quadrupole moments and proton-neutron structure in p-shell mirror nuclei. Phys. Rev. C 2021, 104, 034319. [Google Scholar] [CrossRef]
- Lam, Y.H.; Smirnova, N.A.; Caurier, E. Isospin nonconservation in sd-shell nuclei. Phys. Rev. C 2013, 87, 054304. [Google Scholar] [CrossRef] [Green Version]
- Kaneko, K.; Sun, Y.; Mizusaki, T.; Tazaki, S. Variation in displacement energies due to isospin-nonconserving forces. Phys. Rev. Lett. 2013, 110, 172505. [Google Scholar] [CrossRef] [Green Version]
- Kaneko, K.; Sun, Y.; Mizusaki, T.; Tazaki, S. Isospin-nonconserving interaction in the T=1 analogue states of the mass-70 region. Phys. Rev. C 2014, 89, 031302. [Google Scholar] [CrossRef] [Green Version]
- Holt, J.D.; Menendez, J.; Schwenk, A. Three-body forces and proton-rich nuclei. Phys. Rev. Lett. 2013, 110, 022502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bentley, M.; Lenzi, S.M.; Simpson, S.A.; Diget, C.A. Isospin-breaking interactions studied through mirror energy differences. Phys. Rev. C 2015, 92, 024310. [Google Scholar] [CrossRef] [Green Version]
- Lenzi, S.M.; Bentley, M.; Lau, R.; Diget, C.A. Isospin-symmetry breaking corrections for the description of triplet energy differences. Phys. Rev. C 2018, 98, 054322. [Google Scholar] [CrossRef] [Green Version]
- Ormand, W.E.; Brown, B.A.; Hjorth-Jensen, M. Realistic calculations for c coefficients of the isobaric mass multiplet equation in 1p0f shell nuclei. Phys. Rev. C 2017, 96, 024323. [Google Scholar] [CrossRef] [Green Version]
- Magilligan, A.; Brown, B.A. New isospin-breaking “USD” Hamiltonians for the sd shell. Phys. Rev. C 2020, 101, 064312. [Google Scholar] [CrossRef]
- Martin, M.S.; Stroberg, S.R.; Holt, J.D.; Leach, K.G. Testing isospin symmetry breaking in ab initio nuclear theory. Phys. Rev. C 2021, 104, 014324. [Google Scholar] [CrossRef]
- Caurier, E.; Navrátil, P.; Ormand, W.E.; Vary, J.P. Ab initio shell model for A=10 nuclei. Phys. Rev. C 2002, 66, 024314. [Google Scholar] [CrossRef]
- Michel, N.; Nazarewicz, W.; Płoszajczak, M. Isospin mixing and the continuum coupling in weakly bound nuclei. Phys. Rev. C 2010, 82, 044315. [Google Scholar] [CrossRef]
- Sagawa, H.; Van Giai, N.; Suzuki, T. Effect of isospin mixing on superallowed Fermi β decay. Phys. Rev. C 1996, 53, 2163–2170. [Google Scholar] [CrossRef]
- Liang, H.; Van Giai, N.; Meng, J. Isospin corrections for superallowed Fermi β decay in self-consistent relativistic random-phase approximation approaches. Phys. Rev. C 2009, 79, 064316. [Google Scholar] [CrossRef]
- Petrovici, A. Isospin-symmetry breaking and shape coexistence in A≈70 analogs. Phys. Rev. C 2015, 91, 014302. [Google Scholar] [CrossRef]
- Satuła, W.; Dobaczewski, J.; Nazarewicz, W.; Rafalski, M. Microscopic calculations of isospin-breaking corrections to superallowed beta decay. Phys. Rev. Lett. 2011, 106, 132502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satula, W.; Dobaczewski, J.; Nazarewicz, W.; Rafalski, M. Isospin-breaking corrections to superallowed Fermi β decay in isospin- and angular-momentum-projected nuclear density functional theory. Phys. Rev. C 2012, 86, 054316. [Google Scholar] [CrossRef] [Green Version]
- Satuła, W.; Baçzyk, P.; Dobaczewski, J.; Konieczka, M. No-core configuration-interaction model for the isospin- and angular-momentum-projected states. Phys. Rev. C 2016, 94, 024306. [Google Scholar] [CrossRef] [Green Version]
- Baçzyk, P.; Dobaczewski, J.; Konieczka, M.; Nakatsukasa, T.; Sato, K.; Satula, W. Isospin-symmetry breaking in masses of N≈Z nuclei. Phys. Lett. B 2018, 778, 178–183. [Google Scholar] [CrossRef]
- Baczyk, P.; Satula, W.; Dobaczewski, J.; Konieczka, M. Isobaric multiplet mass equation within nuclear density functional theory. J. Phys. G 2019, 46, 03LT01. [Google Scholar] [CrossRef] [Green Version]
- Roca-Maza, X.; Colò, G.; Sagawa, H. Nuclear symmetry energy and the breaking of the isospin symmetry: How do they reconcile with each other? Phys. Rev. Lett. 2018, 120, 202501. [Google Scholar] [CrossRef] [Green Version]
- Naito, T.; Colò, G.; Liang, H.; Roca-Maza, X.; Sagawa, H. Toward ab initio charge symmetry breaking in nuclear energy density functionals. Phys. Rev. C 2022, 105, L021304. [Google Scholar] [CrossRef]
- Bertsch, G.F.; Mekjian, A. Isospin impurities in nuclei. Ann. Rev. Nucl. Sci. 1972, 22, 25–64. [Google Scholar] [CrossRef]
- Raman, S.; Walkiewicz, T.A.; Behrens, H. Superallowed 0+→0+ and isospin-forbidden Jπ→Jπ Fermi transitions. At. Data Nucl. Data Tables 1975, 16, 451–494. [Google Scholar] [CrossRef]
- Auerbach, N. Coulomb effects in nuclear structure. Phys. Rep. 1983, 98, 273–341. [Google Scholar] [CrossRef]
- Brussaard, P.J.; Glaudemans, P.W.M. Shell-Model Applications in Nuclear Spectroscopy; North-Holland Publishing Co.: Amsterdam, The Netherlands, 1977. [Google Scholar]
- Heyde, K.L.G. The Nuclear Shell Model; CRC Press/Taylor & Francis Group: Boca Raton, FL, USA, 2004. [Google Scholar] [CrossRef]
- Suhonen, J. From Nucleons to Nucleus; Springer: Heidelberg/Berlin, Germany, 2007. [Google Scholar] [CrossRef] [Green Version]
- Caurier, E.; Martínez-Pinedo, G.; Nowacki, F.; Poves, A.; Zuker, A.P. The shell model as a unified view of nuclear structure. Rev. Mod. Phys. 2005, 77, 427–488. [Google Scholar] [CrossRef] [Green Version]
- Smirnova, N.A. Isospin-symmetry breaking in nuclear structure. Nuovo Cim. C 2019, 42, 54. [Google Scholar] [CrossRef]
- Bertsch, G.F. Role of core polarization in two-body interaction. Nucl. Phys. 1965, 74, 234–240. [Google Scholar] [CrossRef]
- Kuo, T.T.S.; Brown, G.E. Structure of finite nuclei and the free nucleon-nucleon interaction. An application to 18O and 18F. Nucl. Phys. 1966, 85, 40–86. [Google Scholar] [CrossRef]
- Hjorth-Jensen, M.; Kuo, T.T.S.; Osnes, E. Realitic effective interactions for nuclear systems. Phys. Rep. 1995, 261, 125–270. [Google Scholar] [CrossRef]
- Coraggio, A.; Covello, A.; Gargano, A.; Itaco, N.; Kuo, T.T.S. Shell-model calculations and realistic effective interactions. Prog. Part. Nucl. Phys. 2009, 62, 135–182. [Google Scholar] [CrossRef] [Green Version]
- Stroberg, S.R.; Hergert, H.; Bogner, S.; Holt, J.D. Nonempirical interactions for the nuclear shell model: An update. Ann. Rev. Nucl. Part. Sci. 2019, 69, 307–362. [Google Scholar] [CrossRef] [Green Version]
- Poves, A.; Zuker, A.P. Theoretical spectroscopy and the fp shell. Phys. Rep. 1981, 70, 235–314. [Google Scholar] [CrossRef]
- Barrett, B.R. Theoretical approaches to many-body perturbation theory and challenges. J. Phys. G: Nucl. Part. Phys. 2005, 31, S1349–S1355. [Google Scholar] [CrossRef]
- Stroberg, S.R.; Calci, A.; Hergert, H.; Holt, J.D.; Bogner, S.; Roth, R.; Schwenk, A. Nucleus-dependent valence-space approach to nuclear structure. Phys. Rev. Lett. 2017, 118, 032502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dikmen, E.; Lisetskiy, A.F.; Barrett, B.R.; Maris, P.; Shirokov, A.M.; Vary, J.P. Ab initio effective interactions for sd-shell valence nucleons. Phys. Rev. C 2015, 91, 064301. [Google Scholar] [CrossRef] [Green Version]
- Smirnova, N.A.; Barrett, B.R.; Kim, Y.; Shin, I.J.; Shirokov, A.M.; Dikmen, E.; Maris, P.; Vary, J.P. Effective interactions in the sd shell. Phys. Rev. C 2019, 100, 054329. [Google Scholar] [CrossRef] [Green Version]
- Jansen, G.R.; Engel, J.; Hagen, G.; Navrátil, P.; Signoracci, A. Ab initio coupled-cluster effective interactions for the shell model: Application to neutron-rich oxygen and carbon isotopes. Phys. Rev. Lett. 2014, 113, 142502. [Google Scholar] [CrossRef] [Green Version]
- Jansen, G.R.; Schuster, M.D.; Signoracci, A.; Hagen, G.; Navrátil, P. Open sd-shell nuclei from first principles. Phys. Rev. C 2016, 94, 011301. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.H.; Morris, T.D.; Hagen, G.; Jansen, G.R.; Papenbrock, T. Shell-model coupled-cluster method for open-shell nuclei. Phys. Rev. C 2018, 98, 054320. [Google Scholar] [CrossRef] [Green Version]
- Fukui, T.; De Angelis, L.; Ma, Y.Z.; Coraggio, A.; Gargano, A.; Itaco, N.; Xu, F. Realistic shell-model calculations for p-shell nuclei including contributions of a chiral three-body force. Phys. Rev. C 2018, 98, 044305. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.Z.; Coraggio, A.; De Angelis, L.; Fukui, T.; Gargano, A.; Itaco, N.; Xu, F. Contribution of chiral three-body forces to the monopole component of the effective shell-model Hamiltonian. Phys. Rev. C 2019, 100, 034324. [Google Scholar] [CrossRef] [Green Version]
- Cohen, S.; Kurath, D. Effective interactions for the 1p shell. Nucl. Phys. 1965, 73, 1–24. [Google Scholar] [CrossRef]
- Wildenthal, B.H. Empirical strengths of spin operators in nuclei. Prog. Part. Nucl. Phys. 1984, 11, 5–51. [Google Scholar] [CrossRef]
- Richter, W.A.; Brown, B.A. New “USD” Hamiltonians for the sd shell. Phys. Rev. C 2006, 85, 045806. [Google Scholar] [CrossRef] [Green Version]
- Poves, A.; Sanchez-Solano, J.; Caurier, E.; Nowacki, F. Shell model study of the isobaric chains A=50, A=51 and A=52. Nucl. Phys. A 2001, 694, 157–198. [Google Scholar] [CrossRef] [Green Version]
- Honma, M.; Otsuka, T.; Brown, B.A.; Mizusaki, T. New effective interaction for pf-shell nuclei and its implications for the stability of the N=Z=28 closed core. Phys. Rev. C 2004, 69, 034335. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.H.; Zhang, P.; Zhou, X.H.; Wang, M.; Litvinov, Yu.A.; Xu, H.S.; Xu, X.; Shuai, P.; Lam, Y.H.; Chen, R.J.; et al. Isochronous mass measurements of T_z=-1fp-shell nuclei from projectile fragmentation of 58Ni. Phys. Rev. C 2018, 98, 014319. [Google Scholar] [CrossRef] [Green Version]
- Brown, B.A.; Rae, W.D.M. The shell-model code NuShellX. Nucl. Data Sheets 2014, 120, 115–118. [Google Scholar] [CrossRef]
- Jänecke, J. Vector and tensor Coulomb energies. Phys. Rev. C 1966, 147, 735–742. [Google Scholar] [CrossRef]
- Klochko, O.; Smirnova, N. A. Isobaric-multiplet mass equation in a macroscopic-microscopic approach. Phys. Rev. C 2021, 103, 024316. [Google Scholar] [CrossRef]
- Bentley, M.A.; Lenzi, S.M. Coulomb energy differences between high-spin states in isobaric multiplets. Prog. Part. Nucl. Phys. 2007, 59, 497–561. [Google Scholar] [CrossRef]
- Warner, D.D.; Van Isacker, P.; Bentley, M.A. The role of isospin symmetry in collective nuclear structure. Nat. Phys. 2006, 2, 311–318. [Google Scholar] [CrossRef]
- Bentley, M.A. Excited states in isobaric multiplets—Experimental advances and the shell-model approach. Physics 2022, 4, 995–1011. [Google Scholar] [CrossRef]
- Lenzi, S.M.; Poves, A.; Macchiavelli, A.O. Isospin symmetry breaking in the mirror pair 73Sr - 73Br. Phys. Rev. C 2020, 102, 031302. [Google Scholar] [CrossRef]
- Boso, A.; Lenzi, S.M.; Recchia, F.; Bonnard, J.; Zuker, A.P.; Aydin, S.; Bentley, M.A.; Cederwall, B.; Clement, E.; de France, G.; et al. Neutron skin effects in mirror energy differences: The case of 23Mg–23Na. Phys. Rev. Lett. 2018, 121, 032502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, R.G. An analysis of the energy levels of the mirror nuclei, C13 and N13. Phys. Rev. 1952, 88, 1109–1125. [Google Scholar] [CrossRef]
- Ehrman, J.B. On the displacement of corresponding energy levels of C13 and N13. Phys. Rev. 1951, 81, 412–416. [Google Scholar] [CrossRef]
- Longfellow, B.; Gade, A.; Brown, B.A.; Richter, W.A.; Bazin, D.; Bender, P.C.; Bowry, M.; Elman, B.; Lunderberg, B.E.; Weisshaar, D.; et al. Measurement of key resonances for the 24Al(p,γ)25Si reaction rate using in-beam γ-ray spectroscopy. Phys. Rev. C 2018, 97, 054307. [Google Scholar] [CrossRef] [Green Version]
- Cenxi, Y.; Qi, C.; Xu, F.; Suzuki, T.; Otsuka, T. Mirror energy difference and the structure of loosely bound proton-rich nuclei around A=20. Phys. Rev. C 2014, 89, 044327. [Google Scholar] [CrossRef] [Green Version]
- Pape, A.; Antony, M.S. Masses of proton-rich Tz<0 nuclei with isobaric mass equation. At. Data Nucl. Data Tables 1988, 39, 201–203. [Google Scholar] [CrossRef]
- Brown, B.A. Diproton decay of nuclei on the proton drip line. Phys. Rev. C 1991, 43, 1513. [Google Scholar] [CrossRef] [Green Version]
- Ormand, W.E. Mapping the proton drip line up to A=70. Phys. Rev. C 1997, 55, 2407–2417. [Google Scholar] [CrossRef] [Green Version]
- Brown, B.A.; Clement, R.R.C.; Schatz, H.; Volya, A.; Richter, W.A. Proton drip-line calculations and the rp process. Phys. Rev. C 2002, 65, 045802. [Google Scholar] [CrossRef] [Green Version]
- Richter, W.A.; Brown, B.A.; Signoracci, A.; Wiescher, M. Properties of 26Mg and 26Si in the sd shell model and the determination of the 26Al(p,γ)26Si reaction rate. Phys. Rev. C 2011, 83, 065803. [Google Scholar] [CrossRef] [Green Version]
- Benenson, W.; Kashy, E. Isobaric quartests in nuclei. Rev. Mod. Phys. 1979, 51, 527–540. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Xu, H.S.; Litvinov, Yu.A.; Tu, X.L.; Yan, X.L.; Typel, S.; Blaum, K.; Wang, M.; Zhou, X.H.; Sun, Y.; et al. Mass measurements of the neutron-deficient 41Ti, 45Cr, 49Fe, and 53Ni nuclides: First test of the isobaric multiplet mass equation in fp-shell nuclei. Phys. Rev. Lett 2012, 109, 102501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brodeur, M.; Kwiatkowski, A.A.; Drozdowski, O.M.; Andreoiu, C.; Burdette, D.; Chaudhuri, A.; Chowdhury, U.; Gallant, A.T.; Grossheim, A.; Gwinner, G.; et al. Precision mass measurements of magnesium isotopes and implications for the validity of the isobaric mass multiplet equation. Phys. Rev. C 2017, 96, 034316. [Google Scholar] [CrossRef] [Green Version]
- Bertsch, G.F.; Kahana, S. Tz3 term in the isobaric multiplet equation. Phys. Lett. B 1970, 33, 193–194. [Google Scholar] [CrossRef]
- Signoracci, A.; Brown, B.A. Effects of isospin mixing in the A=32 quintet. Phys. Rev. C 2011, 84, 031301. [Google Scholar] [CrossRef] [Green Version]
- Kamil, M.; Triambak, S.; Magilligan, A.; García, A.; Brown, B.A.; Adsley, P.; Bildstein, V.; Burbadge, C.; Diaz Varela, A.; Faestermann, T.; et al. Isospin mixing and the cubic isobaric multiplet mass equation in the lowest T=2, A=32 quintet. Phys. Rev. C 2022, 104, L061303. [Google Scholar] [CrossRef]
- Barker, F.C. Intermediate coupling shell-model calculations for light nuclei. Nucl. Phys. 1966, 83, 418–448. [Google Scholar] [CrossRef]
- Smirnova, N.A.; Blank, B.; Brown, B.A.; Richter, W.A.; Benouaret, N.; Lam, Y.H. Theoretical analysis of isospin mixing with the β decay of 56Zn. Phys. Rev. C 2016, 93, 044305. [Google Scholar] [CrossRef] [Green Version]
- Hoyle, C.D.; Adelberger, E.G.; Blair, J.S.; Snover, K.A.; Swanson, H.E.; Von Lintig, R.D. Isospin mixing in 24Mg. Phys. Rev. C 1983, 27, 1244–1259. [Google Scholar] [CrossRef]
- Orrigo, S.; Rubio, B.; Fujita, Y.; Blank, B.; Gelletly, W.; Agramunt, J.; Algora, A.; Ascher, P.; Bilgier, B.; Cáceres, L.; et al. Observation of the β-delayed γ-proton decay of 56Zn and its impact on the Gamow-Teller strength evaluation. Phys. Rev. Lett. 2014, 112, 222501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hagberg, E.; Koslowsky, V.T.; Hardy, J.C.; Towner, I.S.; Hykawy, J.G.; Savard, G.; Shinozuka, T. Tests of isospin mixing corrections in superallowed 0+→0+β decays. Phys. Rev. Lett 1994, 73, 396–399. [Google Scholar] [CrossRef] [PubMed]
- MacLean, A.D.; Laffoley, A.T.; Svensson, C.E.; Ball, G.C.; Leslie, J.T.; Andreoiu, C.; Babu, A.; Bhattacharjee, S.S.; Bidaman, H.; Bildstein, V.; et al. High-precision branching ratio measurement and spin assignment implications for 62Ga superallowed β decay. Phys. Rev. C 2020, 102, 054325. [Google Scholar] [CrossRef]
- Schuurmans, P.; Camps, J.; Phalet, T.; Severijns, N.; Vereecke, B.; Versyck, S. Isospin mixing in the ground state of 52Mn. Nucl. Phys. A 2000, 672, 89–98. [Google Scholar] [CrossRef]
- Severijns, N.; Vénos, D.; Schuurmans, P.; Phalet, T.; Honusek, M.; Srnka, D.; Vereecke, B.; Versyck, S.; Zákoucký, D.; Köster, U.; et al. Isospin mixing in the T=5/2 ground state of 71As. Phys. Rev. C 2005, 71, 064310. [Google Scholar] [CrossRef] [Green Version]
- Farnea, E.; de Angelis, G.; Gadea, A.; Bizzeti, P.G.; Dewald, A.; Eberth, J.; Algora, A.; Axiotis, M.; Bazzacco, D.; Bizzeti-Sona, A.M.; et al. Isospin mixing in the N=Z nucleus 64Ge. Phys. Lett. B 2004, 551, 56–62. [Google Scholar] [CrossRef]
- Bizzeti, P.G.; de Angelis, G.; Lenzi, S.M.; Orlandi, R. Isospin symmetry violation in mirror E1 transitions: Coherent contributions from the giant isovector monopole resonance in the 67As–67Se doublet. Phys. Rev. C 2012, 86, 044311. [Google Scholar] [CrossRef] [Green Version]
- Lisetskiy, A.F.; Schmidt, A.; Schneider, I.; Friessner, C.; Pietralla, N.; von Brentano, P. Isospin mixing between low-lying states of the odd-odd N=Z nucleus 54Co. Phys. Rev. Lett. 2002, 89, 012502. [Google Scholar] [CrossRef]
- Prados-Estevez, F.M.; Bruce, A.M.; Taylor, M.J.; Amro, H.; Beausang, C.W.; Casten, R.F.; Ressler, J.J.; Barton, C.J.; Chandler, C.; Hammond, G. Isospin purity of T=1 states in the A=38 nuclei studied via lifetime measurements in 38K. Phys. Rev. C 2007, 75, 014309. [Google Scholar] [CrossRef] [Green Version]
- Giles, M.M.; Nara Singh, B.S.; Barber, L.; Cullen, D.M.; Mallaburn, M.J.; Beckers, M.; Blazhev, A.; Braunroth, T.; Dewald, A.; Fransen, C.; et al. Probing isospin symmetry in the (50Fe, 50Mn, 50Cr) isobaric triplet via electromagnetic transition rates. Phys. Rev. C 2019, 99, 044317. [Google Scholar] [CrossRef] [Green Version]
- Bizzeti, P.G.; Bizetti-Sona, A.M.; Cambi, A.; Mandò, M.; Maurenzig, P.R.; Signorini, C. Strength of analogue E2 transitions in 30Si and 30P. Lett. Nouvo Cim. 1969, 16, 775. [Google Scholar] [CrossRef]
- Ekman, J.; Rudolph, D.; Fahlander, C.; Zuker, A.P.; Bentley, M.A.; Lenzi, S.M.; Andreoiu, C.; Axiotis, M.; de Angelis, G.; Farnea, E.; et al. Unusual isospin-breaking and isospin-mixing effects in the A=35 mirror nuclei. Phys. Rev. Lett. 2004, 92, 132502. [Google Scholar] [CrossRef] [PubMed]
- Pattabiraman, N.S.; Jenkins, D.G.; Bentley, M.A.; Wadsworth, R.; Lister, C.J.; Carpenter, M.P.; Janssens, R.V.F.; Khoo, T.L.; Lauritsen, T.; Seweryniak, D.; et al. Analog E1 transitions and isospin mixing. Phys. Rev. C 2008, 78, 024301. [Google Scholar] [CrossRef] [Green Version]
- von Neumann-Cosel, P.; Gräf, H.-D.; Krämer, U.; Richter, A.; Spamer, E. Electroexcitation of isoscalar and isovector magnetic dipole transitions in 12C and isospin mixing. Nucl. Phys. A 2000, 669, 3–13. [Google Scholar] [CrossRef]
- Corsi, A.; Wieland, O.; Barlini, S.; Bracco, A.; Camera, F.; Kravchuk, V.L.; Baiocco, G.; Bardelli, L.; Benzoni, G.; Bini, M.; et al. Measurement of isospin mixing at a finite temperature in 80Zr via giant dipole resonance decay. Phys. Rev. C 2011, 84, 041304. [Google Scholar] [CrossRef] [Green Version]
- Ceruti, S.; Camera, F.; Bracco, A.; Avigo, R.; Benzoni, G.; Blasi, N.; Bocchi, G.; Bottoni, S.; Brambilla, S.; Crespi, F.C.L.; et al. Isospin mixing in 80Zr: From finite to zero temperature. Phys. Rev. Lett. 2016, 115, 222502. [Google Scholar] [CrossRef] [Green Version]
- Gosta, G.; Mentana, A.; Camera, F.; Bracco, A.; Ceruti, S.; Benzoni, G.; Blasi, N.; Brambilla, S.; Capra, S.; Crespi, F.C.L.; et al. Probing isospin mixing with the giant dipole resonance in the 60Zn compound nucleus. Phys. Rev. C 2021, 103, L041302. [Google Scholar] [CrossRef]
- Brown, B.A. Isospin-forbidden β-delayed proton emission. Phys. Rev. Lett. 1990, 65, 2753–2756. [Google Scholar] [CrossRef]
- Dossat, C.; Adimi, F.; Aksouh, F.; Becker, F.; Bey, A.; Blank, B.; Borcea, C.; Borcea, R.; Boston, A.; Caamano, M.; et al. The decay of proton-rich nuclei in the mass A=36-56 region. Nucl. Phys. A 2005, 792, 18–86. [Google Scholar] [CrossRef]
- Blank, B.; Borge, M.J.G. Nuclear structure at the proton drip line: Advances with nuclear decay studies. Prog. Part. Nucl. Phys. 2008, 60, 403–483. [Google Scholar] [CrossRef]
- Ormand, W.E.; Brown, B.A. Isospin-forbidden proton and neutron emission in 1s-0d shell nuclei. Phys. Lett. B 1986, 174, 128–132. [Google Scholar] [CrossRef]
- Smirnova, N.A.; Blank, B.; Richter, W.A.; Brown, B.A.; Benouaret, N.; Lam, Y.H. Isospin mixing from β-delayed proton emission. Phys. Rev. C 2017, 95, 054301. [Google Scholar] [CrossRef] [Green Version]
- Saxena, M.; Ong, W.-J.; Meisel, A.; Hoff, D.E.M.; Smirnova, N.; Bender, P.C.; Burcher, S.P.; Carpenter, M.P.; Carroll, J.J.; Chester, A.; et al. 57Zn β-delayed proton emission establishes the 56Ni rp-process waiting point bypass. Phys. Lett. B 2022, 829, 137059. [Google Scholar] [CrossRef]
- Towner, I.S.; Hardy, J.C. Currents and their couplings in the weak sector of the Standard Model. In Symmetries and Fundamental Interactions in Nuclei; Henley, E.M., Haxton, W.C., Eds.; World Scientific: Singapore, 1995; pp. 183–249. [Google Scholar] [CrossRef] [Green Version]
- Severijns, N.; Beck, M.; Naviliat-Cuncic, O. Tests of the standard electroweak model in nuclear beta decay. Rev. Mod. Phys. 2006, 78, 991–1040. [Google Scholar] [CrossRef] [Green Version]
- González-Alonso, M.; Naviliat-Cuncic, O.; Severijns, N. New physics searches in nuclear and neutron β-decay. Prog. Part. Nucl. Phys. 2019, 104, 165–223. [Google Scholar] [CrossRef] [Green Version]
- Towner, I.S.; Hardy, J.C. The evaluation of Vud and its impact on the unitarity of the Cabibbo–Kobayashi– Maskawa quark-mixing matrix. Rep. Prog. Phys. 2010, 73, 046301. [Google Scholar] [CrossRef] [Green Version]
- Hardy, J.C.; Towner, I.S. Superallowed 0+→0+ nuclear β decays: 2020 critical survey, with implications for Vud and CKM unitarity. Phys. Rev. 2020, 102, 045501. [Google Scholar] [CrossRef]
- Seng, C.-Y.; Gorchtein, M.; Patel, H.H.; Ramsey-Musolf, M.J. Reduced Hadronic Uncertainty in the Determination of Vud . Phys. Rev. Lett. 2018, 121, 241804. [Google Scholar] [CrossRef] [Green Version]
- Ormand, W.E.; Brown, B.A. Isospin-mixing corrections for fp-shell Fermi transitions. Phys. Rev. C 1995, 52, 2455–2460. [Google Scholar] [CrossRef] [Green Version]
- Damgaard, J. Corrections to the ft-values of 0+→0+ superallowed β-decays. Nucl. Phys. A 1969, 130, 233–240. [Google Scholar] [CrossRef]
- Auerbach, N. Coulomb corrections to superallowed β decay in nuclei. Phys. Rev. C 2009, 79, 035502. [Google Scholar] [CrossRef] [Green Version]
- Xayavong, L.; Smirnova, N.A. Radial overlap correction to superallowed 0+→0+β decay reexamined. Phys. Rev. C 2018, 97, 024324. [Google Scholar] [CrossRef] [Green Version]
- Miller, G.A.; Schwenk, A. Isospin-symmetry-breaking corrections to superallowed Fermi β decay. Formalism and schematic models. Phys. Rev. C 2008, 78, 035501. [Google Scholar] [CrossRef] [Green Version]
- Miller, G.A.; Schwenk, A. Isospin-symmetry-breaking corrections to superallowed Fermi β decay: Radial excitations. Phys. Rev. C 2009, 80, 064319. [Google Scholar] [CrossRef] [Green Version]
- Towner, I.S.; Hardy, J.C. Improved calculations of isospin-symmetry breaking corrections to superallowed Fermi β decay. Phys. Rev. C 2008, 77, 025501. [Google Scholar] [CrossRef] [Green Version]
- Hardy, J.C.; Towner, I.S. Superallowed 0+→0+ nuclear β decays: 2014 critical survey, with precise results for Vud and CKM unitarity. Phys. Rev. 2015, 91, 025501. [Google Scholar] [CrossRef] [Green Version]
- Ormand, W.E.; Brown, B.A. Corrections to the Fermi matrix element for superallowed β decay. Phys. Rev. Lett. 1989, 62, 866–869. [Google Scholar] [CrossRef] [Green Version]
- Towner, I.S.; Hardy, J.C. Comparative tests of isospin-symmetry breaking corrections to superallowed 0+→0+ nuclear β decay. Phys. Rev. C 2010, 82, 065501. [Google Scholar] [CrossRef] [Green Version]
- Ormand, W.E.; Brown, B.A. Calculated isospin-mixing corrections to Fermi β-decays in 1s0d-shell nuclei with emphasis on A=34. Nucl. Phys. A 1985, 440, 274–300. [Google Scholar] [CrossRef]
- Xayavong, L.; Smirnova, N.; Bender, M.; Bennaceur, K. Shell-model calculation of isospin-symmetry breaking correction to super-allowed Fermi beta decay. Acta Phys. Pol. B. Proc. Supp. 2017, 10, 285–290. [Google Scholar] [CrossRef] [Green Version]
- Xayavong, L.; Smirnova, N.A. Radial overlap correction to superallowed 0+→0+ nuclear β decays using the shell model with Hartree-Fock radial wave functions. Phys. Rev. C 2022, 105, 044308. [Google Scholar] [CrossRef]
- Naviliat-Cuncic, O.; Severijns, N. Test of the conserved vector current hypothesis in T=1/2 mirror transitions and new determination of Vud. Phys. Rev. Lett. 2009, 102, 142302. [Google Scholar] [CrossRef] [Green Version]
- Towner, I.S. Mirror asymmetry in allowed Gamow-Teller β-decay. Nucl. Phys. A 1973, 216, 589–602. [Google Scholar] [CrossRef]
- Smirnova, N.A.; Volpe, M.C. On the asymmetry of Gamow-Teller β-decay rates in mirror nuclei in relation with second-class currents. Nucl. Phys. A 2003, 714, 441–462. [Google Scholar] [CrossRef] [Green Version]
- Grenacs, L. Induced weak currents in nuclei. Ann. Rev. Nucl. Part. Sci. 1985, 35, 455–499. [Google Scholar] [CrossRef]
- Minamisono, K.; Nagatomo, T.; Matsuta, K.; Levy, C.D.P.; Tagishi, Y.; Ogura, M.; Yamaguchi, M.; Ota, H.; Behr, J.A.; Jackson, K.P.; et al. Low-energy test of second-class current in β decays of spin-aligned 20F and 20Na. Phys. Rev. C 2011, 84, 055501. [Google Scholar] [CrossRef] [Green Version]
- Langanke, K.; Martinez-Pinedo, G. Nuclear weak-interaction processes in stars. Rev. Mod. Phys. 2003, 75, 812–862. [Google Scholar] [CrossRef] [Green Version]
- Jose, J.; Hernanz, M.; Iliadis, C. Nucleosynthesis in classical novae. Nucl. Phys. A 2006, 777, 550–578. [Google Scholar] [CrossRef] [Green Version]
- Wallace, R.K.; Woosley, S.E. Explosive hydrogen burning. Astrophys. J. Supp. Ser. 1981, 45, 389–420. [Google Scholar] [CrossRef]
- Schatz, H.; Aprahamian, A.; Görres, J.; Wiescher, M.; Rauscher, T.; Rembges, J.F.; Thielemann, F.K.; Pfeiffer, B.; Möller, P.; Kratz, K.-L.; et al. rp-process nucleosynthesis at extreme temperature and density conditions. Phys. Rep. 1998, 294, 167–263. [Google Scholar] [CrossRef]
- Fowler, W.A.; Hoyle, F. Neutrino processes and pair formation in massive stars and supernovae. Astrophys. J. Supp. 1964, 9, 201–319. [Google Scholar] [CrossRef]
- Herndl, H.; Görres, J.; Wiescher, M.; Brown, B.A.; Van Wormer, L. Proton capture reaction rates in the rp process. Phys. Rev. C 1995, 52, 1078–1094. [Google Scholar] [CrossRef] [Green Version]
- Fisker, J.L.; Barnard, V.; Görres, J.; Langanke, K.; Martinez-Pinedo, G.; Wiescher, M. Shell-model based reaction rates for rp-process nuclei in the mass range A=44-63. At. Data Nucl. Data Tables 2001, 79, 241–292. [Google Scholar] [CrossRef]
- Richter, W.A.; Brown, B.A. Shell-model studies of the rp reaction 35Ar(p,γ)36K. Phys. Rev. C 2012, 85, 045806. [Google Scholar] [CrossRef] [Green Version]
- Lam, Y.H.; Herger, A.; Lu, N.; Jacobs, A.M.; Smirnova, N.A.; Kurtukian-Nieto, T.; Johnston, T.; Kubono, S. The regulated NiCu cycles with the new 57Cu(p,γ)58Zn reaction rate and its influence on type I X-ray bursts: The GS 1826-24 clocked burster. Astrophys. J. 2022, 929, 73–88. [Google Scholar] [CrossRef]
- Brown, B.A.; Richter, W.A.; Wrede, C. Shell-model studies of the astrophysical rapid-proton-capture reaction 30P(p,γ )31S. Phys. Rev. C 2014, 89, 062801. [Google Scholar] [CrossRef]
- Richter, W.A.; Brown, B.A.; Longland, R.; Wrede, C.; Denissenkov, P.; Fry, C.; Herwig, F.; Kurtulgil, D.; Pignatari, M.; Reifarth, R. Shell-model studies of the astrophysical rp-process reactions 34S(p,γ)35Cl and 34g,mCl(p,γ) 35Ar. Phys. Rev. C 2020, 102, 025801. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smirnova, N.A. Isospin-Symmetry Breaking within the Nuclear Shell Model: Present Status and Developments. Physics 2023, 5, 352-380. https://doi.org/10.3390/physics5020026
Smirnova NA. Isospin-Symmetry Breaking within the Nuclear Shell Model: Present Status and Developments. Physics. 2023; 5(2):352-380. https://doi.org/10.3390/physics5020026
Chicago/Turabian StyleSmirnova, Nadezda A. 2023. "Isospin-Symmetry Breaking within the Nuclear Shell Model: Present Status and Developments" Physics 5, no. 2: 352-380. https://doi.org/10.3390/physics5020026
APA StyleSmirnova, N. A. (2023). Isospin-Symmetry Breaking within the Nuclear Shell Model: Present Status and Developments. Physics, 5(2), 352-380. https://doi.org/10.3390/physics5020026