Larmor Temperature, Casimir Dynamics, and Planck’s Law
Abstract
:1. Introduction
1.1. Analog Bridge
1.2. Temperature Definition
1.3. Extension Bridge
2. Energy Radiated by an Electron
2.1. Total Energy Emitted
2.2. UV Cutoff and Temperature
2.3. Scale Dependence
3. Thermal Plateaus
3.1. Constant Power Emission
3.2. Constant Radiation Reaction
3.3. Constant Peel Acceleration
4. Planck Spectrum
4.1. Moving Mirror Model
4.2. Relation to Electrons and Black Holes
5. Stefan–Boltzmann Law
5.1. Classical Stefan–Boltzmann
5.2. Stefan–Boltzmann from Spectra
5.3. Stefan–Boltzmann from Entropy
5.4. Stefan–Boltzmann from Thermodynamics
5.4.1. Maxwell Relations
5.4.2. Equation of State in 3+1 Dimensions
5.4.3. Other Dimensions
5.4.4. Lessons
5.5. Electron as a Gray Body
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hawking, S. Particle creation by black holes. Commun. Math. Phys. 1975, 43, 199–220. [Google Scholar] [CrossRef]
- Bekenstein, J.D.; Mayo, A.E. Black holes are one-dimensional. Gen. Rel. Grav. 2001, 33, 2095–2099. [Google Scholar] [CrossRef]
- Good, M.R.R.; Davies, P.C.W. Infrared acceleration radiation. Found. Phys. 2023, 53, 53. [Google Scholar] [CrossRef]
- Ievlev, E.; Good, M.R.R. Thermal Larmor radiation. arXiv 2023. [Google Scholar] [CrossRef]
- Johnstone Stoney, G. VIIL. On the physical units of nature. Sci. Proc. R. Dublin Soc. 1883, 3, 51–60. Available online: https://books.google.ch/books?id=R79WAAAAIAAJ&pg=PA51 (accessed on 21 June 2023).
- Barrow, J.D. Natural Units Before Planck. Q. J. R. Astron. Soc. 1983, 24, 24–26. Available online: https://ui.adsabs.harvard.edu/abs/1983QJRAS..24...24B/abstract (accessed on 21 June 2023).
- Moore, G.T. Quantum theory of the electromagnetic field in a variable-length one-dimensional cavity. J. Math. Phys. 1970, 11, 2679–2691. [Google Scholar] [CrossRef]
- DeWitt, B.S. Quantum field theory in curved space-time. Phys. Rep. 1975, 19, 295–357. [Google Scholar] [CrossRef]
- Davies, P.; Fulling, S. Radiation from moving mirrors and from black holes. Proc. R. Soc. Lond. A 1977, A356, 237–257. [Google Scholar] [CrossRef]
- Fulling, S.A.; Davies, P.C.W. Radiation from a moving mirror in two dimensional space-time: Conformal anomaly. Proc. R. Soc. Lond. A 1976, 348, 393–414. [Google Scholar] [CrossRef] [Green Version]
- Carlitz, R.D.; Willey, R.S. Reflections on moving mirrors. Phys. Rev. D 1987, 36, 2327–2335. [Google Scholar] [CrossRef]
- Ritus, V. The Symmetry, inferable from Bogoliubov transformation, between the processes induced by the mirror in two-dimensional and the charge in four-dimensional space-time. J. Exp. Theor. Phys. 2003, 97, 10–23. [Google Scholar] [CrossRef] [Green Version]
- Ritus, V. Vacuum-vacuum amplitudes in the theory of quantum radiation by mirrors in 1+1-space and charges in 3+1-space. Int. J. Mod. Phys. A 2002, 17, 1033–1040. [Google Scholar] [CrossRef]
- Ritus, V. Symmetries and causes of the coincidence of the radiation spectra of mirrors and charges in (1+1) and (3+1) spaces. J. Exp. Theor. Phys. 1998, 87, 25–34. [Google Scholar] [CrossRef]
- Nikishov, A.; Ritus, V. Emission of scalar photons by an accelerated mirror in 1+1 space and its relation to the radiation from an electrical charge in classical electrodynamics. J. Exp. Theor. Phys. 1995, 81, 615–624. Available online: http://jetp.ras.ru/cgi-bin/e/index/e/81/4/p615?a=list (accessed on 21 June 2023).
- Zhakenuly, A.; Temirkhan, M.; Good, M.R.R.; Chen, P. Quantum power distribution of relativistic acceleration radiation: Classical electrodynamic analogies with perfectly reflecting moving mirrors. Symmetry 2021, 13, 653. [Google Scholar] [CrossRef]
- Good, M.R.R.; Linder, E.V. Quantum power: A Lorentz invariant approach to Hawking radiation. Eur. Phys. J. C 2022, 82, 204. [Google Scholar] [CrossRef]
- Ford, L.; Vilenkin, A. Quantum radiation by moving mirrors. Phys. Rev. D 1982, 25, 2569–2575. [Google Scholar] [CrossRef]
- Unruh, W.G.; Wald, R.M. Acceleration radiation and generalized second law of thermodynamics. Phys. Rev. D 1982, 25, 942–958. [Google Scholar] [CrossRef]
- Myrzakul, A.; Xiong, C.; Good, M.R.R. CGHS black hole analog moving mirror and its relativistic quantum information as radiation reaction. Entropy 2021, 23, 1664. [Google Scholar] [CrossRef]
- Zangwill, A. Modern Electrodynamics; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar] [CrossRef]
- Jackson, J.D. Classical Electrodynamics; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1999; Available online: https://www.scribd.com/doc/200995304/Classical-Electrodynamics-3rd-Ed-1999-John-David-Jackson (accessed on 21 June 2023).
- Chang, C.S.W.; Falkoff, D.L. On the continuous gamma-radiation accompanying the beta-decay of nuclei. Phys. Rev. 1949, 76, 365–371. [Google Scholar] [CrossRef]
- Ballagh, H.C. Observation of muon inner bremsstrahlung in deep inelastic neutrino scattering. Phys. Rev. Lett. 1983, 50, 1963–1966. [Google Scholar] [CrossRef]
- Strominger, A. Lectures on the infrared structure of gravity and gauge theory. arXiv 2017. [Google Scholar] [CrossRef]
- Cardoso, V.; Lemos, J.P.S.; Yoshida, S. Electromagnetic radiation from collisions at almost the speed of light: An Extremely relativistic charged particle falling into a Schwarzschild black hole. Phys. Rev. D 2003, 68, 084011. [Google Scholar] [CrossRef] [Green Version]
- Tomaras, T.N.; Toumbas, N. IR dynamics and entanglement entropy. Phys. Rev. D 2020, 101, 065006. [Google Scholar] [CrossRef] [Green Version]
- Good, M.R.R. Reflecting at the speed of light. In Memorial Volume for Kerson Huang; Phua, K.K., Low, H.B., Xiong, C., Eds.; World Scientific: Singapore, 2017; pp. 113–116. [Google Scholar] [CrossRef] [Green Version]
- Wilczek, F. Quantum purity at a small price: Easing a black hole paradox. In Proceedings of the International Symposium on Black holes, Membranes, Wormholes and Superstrings, Huston, TX, USA, 16–18 January 1992; Kalara, S., Nanopoulos, D.V., Eds.; World Scintific: Singapore, 1993; pp. 1–21. [Google Scholar] [CrossRef]
- Landsberg, P.T.; De Vos, A. The Stefan-Boltzmann constant in n-dimensional space. J. Phys. A Math. Gen. 1989, 22, 1073. [Google Scholar] [CrossRef]
- Feynman, R.P. Feynman Lectures on Gravitation; CRC Press/Taylor & Francis Group: Boca Raton, FL, USA, 2003. [Google Scholar] [CrossRef]
- Bianchi, E.; Smerlak, M. Entanglement entropy and negative energy in two dimensions. Phys. Rev. D 2014, 90, 041904. [Google Scholar] [CrossRef] [Green Version]
- Barcelo, C.; Liberati, S.; Sonego, S.; Visser, M. Minimal conditions for the existence of a Hawking-like flux. Phys. Rev. D 2011, 83, 041501. [Google Scholar] [CrossRef] [Green Version]
- Carlitz, R.D.; Willey, R.S. Lifetime of a black hole. Phys. Rev. D 1987, 36, 2336–2341. [Google Scholar] [CrossRef]
- Fulling, S.A. Review of some recent work on acceleration radiation. J. Mod. Opt. 2005, 52, 2207–2213. [Google Scholar] [CrossRef]
- Ritus, V.I. Finite value of the bare charge and the relation of the fine structure constant ratio for physical and bare charges to zero-point oscillations of the electromagnetic field in the vacuum. Phys. Usp. 2022, 65, 468–486. [Google Scholar] [CrossRef]
- Ievlev, E.; Good, M.R.R.; Linder, E.V. Thermal radiation from an electron with Schwarzschild-Planck acceleration. arXiv 2023. [Google Scholar] [CrossRef]
- Cong, W.; Tjoa, E.; Mann, R.B. Entanglement harvesting with moving mirrors. J. High Energy Phys. 2019, 6, 21. [Google Scholar] [CrossRef] [Green Version]
- Good, M.R.R.; Anderson, P.R.; Evans, C.R. Mirror reflections of a black hole. Phys. Rev. D 2016, 94, 065010. [Google Scholar] [CrossRef] [Green Version]
- Good, M.R.R. Spacetime continuity and quantum information loss. Universe 2018, 4, 122. [Google Scholar] [CrossRef] [Green Version]
- Good, M.R.R.; Ong, Y.C. Particle spectrum of the Reissner–Nordström black hole. Eur. Phys. J. C 2020, 80, 1169. [Google Scholar] [CrossRef]
- Good, M.R.R.; Foo, J.; Linder, E.V. Accelerating boundary analog of a Kerr black hole. Class. Quant. Grav. 2021, 38, 085011. [Google Scholar] [CrossRef]
- Bell, J.S.; Leinaas, J.M. Electrons as accelerated thermometers. Nucl. Phys. B 1983, 212, 131–150. [Google Scholar] [CrossRef] [Green Version]
- Myhrvold, N.P. Thermal Radiation from accelerated electrons. Ann. Phys. 1985, 160, 102–113. [Google Scholar] [CrossRef]
- Kolbenstvedt, H. Unruh-Davies effect and the Larmor radiation formula in hyperbolic motion. Phys. Scr. 2001, 63, 313–315. [Google Scholar] [CrossRef]
- Landulfo, A.G.; Fulling, S.A.; Matsas, G.E. Classical and quantum aspects of the radiation emitted by a uniformly accelerated charge: Larmor-Unruh reconciliation and zero-frequency Rindler modes. Phys. Rev. D 2019, 100, 045020. [Google Scholar] [CrossRef] [Green Version]
- Bekenstein, J.D. Black holes and information theory. Contemp. Phys. 2003, 45, 31–43. [Google Scholar] [CrossRef] [Green Version]
- Nyquist, H. Thermal agitation of electric charge in conductors. Phys. Rev. 1928, 32, 110–113. [Google Scholar] [CrossRef]
- Stefan, J. Über die Beziehung zwischen der Wärmestrahlung und der Temperatur. Sitzungsber. Kaiserl. Akad. Wiss. Math.-Naturwiss. Cl. 1879, LXXIX, 391–428. Available online: http://www.ing-buero-ebel.de/strahlung/Original/Stefan1879.pdf (accessed on 21 June 2023).
Dimension | Equation of State | Stefan–Boltzmann Law |
---|---|---|
1 | ||
2 | ||
3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ievlev, E.; Good, M.R.R. Larmor Temperature, Casimir Dynamics, and Planck’s Law. Physics 2023, 5, 797-813. https://doi.org/10.3390/physics5030050
Ievlev E, Good MRR. Larmor Temperature, Casimir Dynamics, and Planck’s Law. Physics. 2023; 5(3):797-813. https://doi.org/10.3390/physics5030050
Chicago/Turabian StyleIevlev, Evgenii, and Michael R. R. Good. 2023. "Larmor Temperature, Casimir Dynamics, and Planck’s Law" Physics 5, no. 3: 797-813. https://doi.org/10.3390/physics5030050
APA StyleIevlev, E., & Good, M. R. R. (2023). Larmor Temperature, Casimir Dynamics, and Planck’s Law. Physics, 5(3), 797-813. https://doi.org/10.3390/physics5030050