Agent Mental Models and Bayesian Rules as a Tool to Create Opinion Dynamics Models
Abstract
:1. Introduction: The Need for General Methods
2. Bayesian Models and Rationality
3. Update Rules from Agent Mental Models
3.1. A Brief Introduction to Bayesian Methods
3.2. Agent Communication Rules and Their Mental Assumptions
3.2.1. Changing What Is Communicated
3.2.2. Changing the Mental Variables
3.2.3. Other Mental Models Already Explored
3.3. Introducing Other Behavioral Questions
3.3.1. Direct Bias
3.3.2. Conservatism Bias
4. Results
4.1. Simulating a Direct Bias
4.2. Rewiring the Network
4.2.1. Simulating the Conservatism Bias
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Castellano, C.; Fortunato, S.; Loreto, V. Statistical physics of social dynamics. Rev. Mod. Phys. 2009, 81, 591–646. [Google Scholar] [CrossRef]
- Galam, S. Sociophysics: A Physicist’s Modeling of Psycho-Political Phenomena; Springer Science+Business Media, LLC: New York, NY, USA, 2012. [Google Scholar] [CrossRef]
- Latan, B. The psychology of social impact. Am. Psychol. 1981, 36, 343–365. [Google Scholar] [CrossRef]
- Galam, S.; Gefen, Y.; Shapir, Y. Sociophysics: A new approach of sociological collective behavior: Mean-behavior description of a strike. J. Math. Sociol. 1982, 9, 1–13. [Google Scholar] [CrossRef]
- Galam, S.; Moscovici, S. Towards a theory of collective phenomena: Consensus and attitude changes in groups. Eur. J. Soc. Psychol. 1991, 21, 49–74. [Google Scholar] [CrossRef]
- Sznajd-Weron, K.; Sznajd, J. Opinion evolution in a closed community. Int. J. Mod. Phys. C 2000, 11, 1157. [Google Scholar] [CrossRef]
- Deffuant, G.; Neau, D.; Amblard, F.; Weisbuch, G. Mixing beliefs among interacting agents. Adv. Compl. Sys. 2000, 3, 87–98. [Google Scholar] [CrossRef]
- Martins, A.C.R. Continuous opinions and discrete actions in opinion dynamics problems. Int. J. Mod. Phys. C 2008, 19, 617–624. [Google Scholar] [CrossRef]
- Martins, A.C.R. Bayesian updating as basis for opinion dynamics models. AIP Conf. Proc. 2012, 1490, 212–221. [Google Scholar]
- Schawe, H.; Fontaine, S.; Hernández, L. When network bridges foster consensus. Bounded confidence models in networked societies. Phys. Rev. Res. 2021, 3, 023208. [Google Scholar] [CrossRef]
- DiMaggio, P.; Evans, J.; Bryson, B. Have American’s social attitudes become more polarized? Am. J. Sociol. 1996, 102, 690–755. [Google Scholar] [CrossRef]
- Baldassarri, D.; Gelman, A. Partisans without constraint: Political polarization and trends in american public opinion. Am. J. Sociol. 2008, 114, 408–446. [Google Scholar] [CrossRef]
- Taber, C.S.; Cann, D.; Kucsova, S. The motivated processing of political arguments. Polit. Behav. 2009, 31, 137–155. [Google Scholar] [CrossRef]
- Dreyer, P.; Bauer, J. Does voter polarisation induce party extremism? the moderating role of abstention. West Eur. Politics 2019, 42, 824–847. [Google Scholar] [CrossRef]
- Bramson, A.; Grim, P.; Singer, D.J.; Berger, W.J.; Sack, G.; Fisher, S.; Flocken, C.; Holman, B. Understanding polarization: Meanings, measures, and model evaluation. Philos. Sci. 2017, 84, 115–159. [Google Scholar] [CrossRef]
- Deffuant, G.; Amblard, F.; Weisbuch, G.; Faure, T. How can extremism prevail? A study based on the relative agreement interaction model. J. Artif. Soc. Soc. Simul. (JASSS) 2002, 5, 1. Available online: https://www.jasss.org/5/4/1.html (accessed on 15 June 2024).
- Amblard, F.; Deffuant, G. The role of network topology on extremism propagation with the relative agreement opinion dynamics. Phys. A Stat. Mech. Appl. 2004, 343, 725–738. [Google Scholar] [CrossRef]
- Galam, S. Heterogeneous beliefs, segregation, and extremism in the making of public opinions. Phys. Rev. E 2005, 71, 046123. [Google Scholar] [CrossRef] [PubMed]
- Weisbuch, G.; Deffuant, G.; Amblard, F. Persuasion dynamics. Phys. A Stat. Mech. Appl. 2005, 353, 555–575. [Google Scholar] [CrossRef]
- Franks, D.W.; Noble, J.; Kaufmann, P.; Stagl, S. Extremism propagation in social networks with hubs. Adapt. Behav. 2008, 16, 264–274. [Google Scholar] [CrossRef]
- Martins, A.C.R. Mobility and social network effects on extremist opinions. Phys. Rev. E 2008, 78, 036104. [Google Scholar] [CrossRef]
- Li, L.; Scaglione, A.; Swami, A.; Zhao, Q. Consensus, polarization and clustering of opinions in social networks. IEEE J. Sel. Areas Commun. 2013, 31, 1072–1083. [Google Scholar] [CrossRef]
- Parsegov, S.E.; Proskurnikov, A.V.; Tempo, R.; Friedkin, N.E. Novel multidimensional models of opinion dynamics in social networks. IEEE Trans. Autom. Control 2017, 62, 2270–2285. [Google Scholar] [CrossRef]
- Amelkin, V.; Bullo, F.; Singh, A.K. Polar opinion dynamics in social networks. IEEE Trans. Autom. Control 2017, 62, 5650–5665. [Google Scholar] [CrossRef]
- Hegselmann, R.; Krause, U. Opinion dynamics and bounded confidence models, analysis and simulation. J. Artif. Soc. Soc. Simul. (JASSS) 2002, 5, 2. Available online: https://www.jasss.org/5/3/2.html (accessed on 15 June 2024).
- Galam, S.; Jacobs, F. The role of inflexible minorities in the breaking of democratic opinion dynamics. Phys. A Stat. Mech. Appl. 2007, 381, 366–376. [Google Scholar] [CrossRef]
- Martins, A.C.R.; Galam, S. The building up of individual inflexibility in opinion dynamics. Phys. Rev. E 2013, 87, 042807. [Google Scholar] [CrossRef] [PubMed]
- Martins, A.C.R. Extremism definitions in opinion dynamics models. Phys. A Stat. Mech. Appl. 2022, 589, 126623. [Google Scholar] [CrossRef]
- Tileaga, C. Representing the `other’: A discurive analysis of prejudice and moral exclusion in talk about romanies. J. Community Appl. Soc. Psychol. 2006, 16, 19–41. [Google Scholar] [CrossRef]
- Bafumi, J.; Herron, M.C. Leapfrog representation and extremism: A study of american voters and their members in congress. Am. Polit. Sci. Rev. 2010, 104, 519–542. [Google Scholar] [CrossRef]
- Sobkowicz, P. Whither now, opinion modelers? Front. Phys. 2020, 8, 461. [Google Scholar] [CrossRef]
- Böttcher, L.; Nagler, J.; Herrmann, H.J. Critical behaviors in contagion dynamics. Phys. Rev. Lett. 2017, 118, 088301. [Google Scholar] [CrossRef] [PubMed]
- Galam, S.; Cheon, T. Tipping points in opinion dynamics: A universal formula in five dimensions. Front. Phys. 2020, 8, 446. [Google Scholar] [CrossRef]
- Martins, A.C.R. Discrete opinion models as a limit case of the coda model. Phys. A Stat. Mech. Appl. 2014, 395, 352–357. [Google Scholar] [CrossRef]
- Kowalska-Pyzalska, A.; Maciejowska, K.; Suszczyński, K.; Sznajd-Weron, K.; Weron, R. Turning green: Agent-based modeling of the adoption of dynamic electricity tariffs. Energy Policy 2014, 72, 164–174. [Google Scholar] [CrossRef]
- Müller-Hansen, F.; Schlüter, M.; Mäs, M.; Donges, J.F.; Kolb, J.J.; Thonicke, K.; Heitzig, J. Towards representing human behavior and decision making in earth system models—An overview of techniques and approaches. Earth Syst. Dyn. 2017, 8, 977–1007. [Google Scholar] [CrossRef]
- Haghtalab, N.; Jackson, M.O.; Procaccia, A.D. Belief polarization in a complex world: A learning theory perspective. Proc. Natl. Acad. Sci. USA (PNAS) 2021, 118, e2010144118. [Google Scholar] [CrossRef]
- Martins, A.C.R. Bayesian updating rules in continuous opinion dynamics models. J. Stat. Mech. Theo. Exp. 2009, 2009, P02017. [Google Scholar] [CrossRef]
- Martins, A.C.R.; de Pereira, C.; Vicente, R. An opinion dynamics model for the diffusion of innovations. Phys. A Stat. Mech. Appl. 2009, 388, 3225–3232. [Google Scholar] [CrossRef]
- Martins, A.C.R.; Kuba, C.D. The importance of disagreeing: Contrarians and extremism in the coda model. Adv. Compl. Sys. 2010, 13, 621–634. [Google Scholar] [CrossRef]
- Vicente, R.; Martins, A.C.R.; Caticha, N. Opinion dynamics of learning agents: Does seeking consensus lead to disagreement? J. Stat. Mech. Theo. Exp. 2009, 2009, P03015. [Google Scholar] [CrossRef]
- Si, X.-M.; Liu, Y.; Xiong, F.; Zhang, Y.-C.; Ding, F.; Cheng, H. Effects of selective attention on continuous opinions and discrete decisions. Phys. A Stat. Mech. Appl. 2010, 389, 3711–3719. [Google Scholar] [CrossRef]
- Si, X.-M.; Yun; Cheng, H.; Zhang, Y.-C. An opinion dynamics model for online mass incident. In ICASTE 2010. 2010 3rd International Conference on Advanced Computer Theory and Engineering; Proceedings, Volume 5; Desheng, W., Ruofeng, W., Yi, X., Eds.; The Institute of Electrical and Electronics Engineers, Inc.: New York, NY, USA, 2010; pp. V5-96–V5-99. [Google Scholar] [CrossRef]
- Martins, A.C.R. A middle option for choices in the continuous opinions and discrete actions model. Adv. Appl. Stat. Sci. 2010, 2, 333–346. [Google Scholar]
- Martins, A.C.R. Modeling scientific agents for a better science. Adv. Compl. Sys. 2010, 13, 519–533. [Google Scholar] [CrossRef]
- Deng, L.; Liu, Y.; Xiong, F. An opinion diffusion model with clustered early adopters. Phys. A Stat. Mech. Appl. 2013, 392, 3546–3554. [Google Scholar] [CrossRef]
- Martins, A.C.R. Trust in the coda model: Opinion dynamics and the reliability of other agents. Phys. Lett. A 2013, 377, 2333–2339. [Google Scholar] [CrossRef]
- Diao, S.-M.; Liu, Y.; Zeng, Q.-A.; Luo, G.-X.; Xiong, F. A novel opinion dynamics model based on expanded observation ranges and individuals’ social influences in social networks. Phys. A Stat. Mech. Appl. 2014, 415, 220–228. [Google Scholar] [CrossRef]
- Luo, G.-X.; Liu, Y.; Zeng, Q.-A.; Diao, S.-M.; Xiong, F. A dynamic evolution model of human opinion as affected by advertising. Phys. A Stat. Mech. Appl. 2014, 414, 254–262. [Google Scholar] [CrossRef]
- Caticha, N.; Cesar, J.; Vicente, R. For whom will the bayesian agents vote? Front. Phys. 2015, 3, 25. [Google Scholar] [CrossRef]
- Martins, A.C.R. Opinion particles: Classical physics and opinion dynamics. Phys. Lett. A 2015, 379, 89–94. [Google Scholar] [CrossRef]
- Lu, X.; Mo, H.; Deng, Y. An evidential opinion dynamics model based on heterogeneous social influential power. Chaos Solitons Fractals 2015, 73, 98–107. [Google Scholar] [CrossRef]
- Martins, A.C.R. Thou shalt not take sides: Cognition, logic and the need for changing how we believe. Front. Phys. 2016, 4, 7. [Google Scholar] [CrossRef]
- Chowdhury, N.R.; Morărescu, I.-C.; Martin, S.; Srikant, S. Continuous opinions and discrete actions in social networks: A multi-agent system approach. In 2016 IEEE 55th Conference on Decision and Control (CDC); The Institute of Electrical and Electronics Engineers, Inc.: New York, NY, USA, 2016; pp. 1739–1744. [Google Scholar] [CrossRef]
- Cheng, Z.; Xiong, Y.; Xu, Y. An opinion diffusion model with decision-making groups: The influence of the opinion’s acceptability. Phys. A Stat. Mech. Appl. 2016, 461, 429–438. [Google Scholar] [CrossRef]
- Huang, C.; Hu, B.; Jiang, G.; Yang, R. Modeling of agent-based complex network under cyber-violence. Phys. A Stat. Mech. Appl. 2016, 458, 399–411. [Google Scholar] [CrossRef]
- Garcia, L.M.T.; Roux, A.V.D.; Martins, A.C.R.; Yang, Y.; Florindo, A.A. Development of a dynamic framework to explain population patterns of leisure-time physical activity through agent-based modeling. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 111. [Google Scholar] [CrossRef]
- Sun, R.; Mendez, D. An application of the continuous opinions and discrete actions (coda) model to adolescent smoking initiation. PLoS ONE 2017, 12, e0186163. [Google Scholar] [CrossRef] [PubMed]
- Sobkowicz, P. Opinion dynamics model based on cognitive biases of complex agents. J. Artif. Soc. Soc. Simul. (JASSS) 2018, 21, 8. [Google Scholar] [CrossRef]
- Lee, H.K.; Kim, Y.W. Public opinion by a poll process: Model study and bayesian view. J. Stat. Mech. Theo. Exp. 2018, 2018, 053402. [Google Scholar] [CrossRef]
- Garcia, L.M.T.; Roux, A.V.D.; Martins, A.C.R.; Yang, Y.; Florindo, A.A. Exploring the emergence and evolution of population patterns of leisure-time physical activity through agent-based modelling. Int. J. Behav. Nutr. Phys. Act. 2018, 15, 112. [Google Scholar] [CrossRef] [PubMed]
- Tang, T.; Chorus, C.G. Learning opinions by observing actions: Simulation of opinion dynamics using an action-opinion inference model. J. Artif. Soc. Soc. Simul. (JASSS) 2019, 22, 2. [Google Scholar] [CrossRef]
- Martins, A.C.R. Network generation and evolution based on spatial and opinion dynamics components. Int. J. Mod. Phys. C 2019, 30, 1950077. [Google Scholar] [CrossRef]
- Martins, A.C.R. Discrete opinion dynamics with m choices. Eur. Phys. J. B 2020, 93, 1. [Google Scholar] [CrossRef]
- León-Medina, F.J.; Tena-Sánchez, J.; Miguel, F.J. Fakers becoming believers: How opinion dynamics are shaped by preference falsification, impression management and coherence heuristics. Qual. Quant. 2020, 54, 385–412. [Google Scholar] [CrossRef]
- Maciel, M.V.; Martins, A.C.R. Ideologically motivated biases in a multiple issues opinion model. Phys. A Stat. Mech. Appl. 2020, 553, 124293. [Google Scholar] [CrossRef]
- Fang, A.; Yuan, K.; Geng, J.; Wei, X. Opinion dynamics with bayesian learning. Complexity 2020, 2020, 8261392. [Google Scholar] [CrossRef]
- Sun, Z.; Müller, D. A framework for modeling payments for ecosystem services with agent-based models, bayesian belief networks and opinion dynamics models. Environ. Model. Softw. 2013, 45, 15–28. [Google Scholar] [CrossRef]
- Orléan, A. Bayesian interactions and collective dynamics of opinion: Herd behavior and mimetic contagion. J. Econ. Behav. Organ. 1995, 28, 257–274. [Google Scholar] [CrossRef]
- Rabin, M.; Schrag, J.L. First impressions matter: A model of confirmatory bias. Quart. J. Econ. 1999, 114, 37–82. [Google Scholar] [CrossRef]
- Andreoni, J.; Mylovanov, T. Diverging opinions. Am. Econ. J. Microecon. 2012, 4, 209–232. [Google Scholar] [CrossRef]
- Nishi, R.; Masuda, N. Collective opinion formation model under bayesian updating and confirmation bias. Phys. Rev. E 2013, 87, 062123. [Google Scholar] [CrossRef]
- Eguíluz, V.M.; Masuda, N.; Fernández-Gracia, J. Bayesian decision making in human collectives with binary choices. PLoS ONE 2015, 10, e0121332. [Google Scholar] [CrossRef]
- Wang, Y.; Gan, L.; Djurić, P.M. Opinion dynamics in multi-agent systems with binary decision exchanges. In 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP); Proceedings; The Institute of Electrical and Electronics Engineers, Inc.: New York, NY, USA, 2016; pp. 4588–4592. [Google Scholar] [CrossRef]
- Knill, D.C.; Pouget, A. The Bayesian brain: The role of uncertainty in neural coding and computation. Trends Neurosci. 2004, 27, 712–719. [Google Scholar] [CrossRef]
- Martins, A.C.R. Probabilistic biases as Bayesian inference. Judgm. Decis. Mak. 2006, 1, 108–117. [Google Scholar] [CrossRef]
- Tenenbaum, J.B.; Kemp, C.; Shafto, P. Theory-based Bayesian models of inductive reasoning. In Inductive Reasoning: Experimental, Developmental, and Computational Approaches; Feeney, A., Heit, E., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 167–204. [Google Scholar] [CrossRef]
- Tenenbaum, J.B.; Kemp, C.; Griffiths, T.L.; Goodman, N.D. How to grow a mind: Statistics, structure, and abstraction. Science 2011, 331, 1279–1285. [Google Scholar] [CrossRef]
- Martins, A.C.R. Arguments, Cognition, and Science: Need and Consequences of Probabilistic Induction in Science; Rowman & Littlefield Publishers: Lanham, MD, USA, 2020. [Google Scholar]
- Martins, A.C.R. Embracing undecidability: Cognitive needs and theory evaluation. arXiv 2020, arXiv:2006.02020. [Google Scholar] [CrossRef]
- Simon, H.A. Rational choice and the structure of environments. Psychol. Rev. 1956, 63, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Selten, R. What is bounded rationality? In Bounded Rationality: The Adaptive Toolbox; Gigerenzer, G., Selte, R., Eds.; The MIT Press: Cambridge, MA, USA, 2001; pp. 147–171. [Google Scholar] [CrossRef]
- Cox, R.T. The Algebra of Probable Inference; The John Hopkins Press: Baltimore, MD, USA, 1961; Available online: https://bayes.wustl.edu/Manual/cox-algebra.pdf (accessed on 15 June 2024).
- Jaynes, E.T. Probability Theory: The Logic of Science; Cambridge University Press: New York, NY, USA, 2003. [Google Scholar] [CrossRef]
- Caticha, A.; Giffin, A. Updating probabilities. AIP Conf. Proc. 2006, 872, 31–42. [Google Scholar] [CrossRef]
- Eberhardt, F.; Danks, D. Confirmation in the cognitive sciences: The problematic case of bayesian models. Minds Mach. 2011, 21, 389–410. [Google Scholar] [CrossRef]
- Elqayam, S.; Evans, J.S.B.T. Rationality in the new paradigm: Strict versus soft bayesian approaches. Think. Reason. 2013, 19, 453–470. [Google Scholar] [CrossRef]
- Chater, N.; Felin, T.; Funder, D.C.; Gigerenzer, G.; Koenderink, J.J.; Krueger, J.I.; Noble, D.; Nordli, S.A.; Oaksford, M.; Schwartz, B.; et al. Mind, rationality, and cognition: An interdisciplinary debate. Psychon. Bull. Rev. 2018, 25, 793–826. [Google Scholar] [CrossRef]
- Watson, P.C.; Johnson-Laird, P. Psychology of Reasoning: Structure and Content; Harvard University Press: Cambridge, MA, USA, 1972; Available online: https://archive.org/details/psychologyofreas0000waso (accessed on 15 June 2024).
- Tversky, A.; Kahneman, D. Extension versus intuituive reasoning: The conjuction fallacy in probability judgement. Psychol. Rev. 1983, 90, 293–315. [Google Scholar] [CrossRef]
- Oskamp, S. Overconfidence in case-study judgments. J. Consult. Psychol. 1965, 29, 261–265. [Google Scholar] [CrossRef] [PubMed]
- Johnson-Laird, P.N.; Legrenzi, P.; Legrenzi, M.S. Reasoning and a sense of reality. Brit. J. Psychol. 1972, 6, 395–400. [Google Scholar] [CrossRef]
- Gigerenzer, G.; Todd, P.M.; the ABC Research Group. Simple Heuristics That Make Us Smart; Oxford University Press, Inc.: New York, NY, USA, 1999. [Google Scholar]
- Tversky, A.; Kahneman, D. Availability: A heuristic for judging frequency and probability. Cogn. Psychol. 1973, 5, 207–232. [Google Scholar] [CrossRef]
- Gigerenzer, G.; Goldstein, D.G. Reasoning the fast and frugal way: Models of bounded rationality. Psychol. Rev. 1996, 103, 650–669. [Google Scholar] [CrossRef] [PubMed]
- Kahan, D.M. Ideology, motivated reasoning, and cognitive reflection. Judgm. Decis. Mak. 2013, 8, 407–424. [Google Scholar] [CrossRef]
- Kahan, D.M. The expressive rationality of inaccurate perceptions. Behav. Brain Sci. 2017, 40, e6. [Google Scholar] [CrossRef] [PubMed]
- Mercier, H.; Sperber, D. Why do humans reason? arguments for an argumentative theory. Behav. Brain Sci. 2011, 34, 57–111. [Google Scholar] [CrossRef] [PubMed]
- Mercier, H.; Sperber, D. The Enigma of Reason; Harvard University Press: Cambridge, MA, USA, 2017. [Google Scholar] [CrossRef]
- Kahneman, D.; Tversky, A. Prospect theory: An analysis of decision under risk. Econometrica 1979, 47, 263–291. [Google Scholar] [CrossRef]
- Edwards, W. Conservatism in human information processing. In Formal Representation of Human Judgment; Kleinmuntz, B., Ed.; John Wiley & Sons, Inc.: New York, NY, USA, 1968; pp. 359–369. Available online: https://pages.ucsd.edu/~mckenzie/Edwards1968excerpts.pdf (accessed on 15 June 2024).
- Plous, S. The Psychology of Judgment and Decision Making; McGraw-Hill: New York, NY, USA, 1993. [Google Scholar]
- Baron, J. Thinking and Deciding; Cambridge University Press: New York, NY, USA, 2023. [Google Scholar] [CrossRef]
- Fitelson, B.; Thomason, N. Bayesians sometimes cannot ignore even very implausible theories (even ones that have not yet been thought of). Australas. J. Log. 2008, 6, 25–36. [Google Scholar] [CrossRef]
- Galam, S. Contrarian deterministic effect: The hung elections scenario. Phys. A Stat. Mech. Appl. 2004, 333, 453–460. [Google Scholar] [CrossRef]
- O’Hagan, A. Kendall’s Advanced Theory of Statistics. Volume 2B: Bayesian Inference; Edward Arnold: London, UK, 1994. [Google Scholar]
- Jervis, R. Perception and Misperception in International Politics; Princeton University Press: Princeton, NJ, USA, 1976. [Google Scholar] [CrossRef]
- Clifford, P.; Sudbury, A. A model for spatial conflict. Biometrika 1973, 60, 581–588. [Google Scholar] [CrossRef]
- Holley, R.; Liggett, T.M. Ergodic theorems for weakly interacting systems and the voter model. Ann. Probab. 1975, 3, 643–663. [Google Scholar] [CrossRef]
- Galam, S. Modelling rumors: The no plane pentagon french hoax case. Phys. A Stat. Mech. Appl. 2003, 320, 571–580. [Google Scholar] [CrossRef]
- Galam, S. Opinion dynamics, minority spreading and heterogeneous beliefs. In Econophysics and Sociophysics: Trends and Perspectives; Chakrabarti, B.K., Chakraborti, A., Chatterjee, A., Eds.; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2006; Chapter 13. [Google Scholar] [CrossRef]
- Nickerson, R.S. Confirmation bias: A ubiquitous phenomenon in many guises. Rev. Gen. Psychol. 1998, 2, 175–220. [Google Scholar] [CrossRef]
- The R Development Core Team. R: A Language and Environment for Statistical Computing. Reference Index. Version 2.7.0; R Foundation for Statistical Computing: Vienna, Austria, 2008; Available online: https://ringo.ams.stonybrook.edu/images/2/2b/Refman.pdf (accessed on 15 June 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martins, A.C.R. Agent Mental Models and Bayesian Rules as a Tool to Create Opinion Dynamics Models. Physics 2024, 6, 1013-1031. https://doi.org/10.3390/physics6030062
Martins ACR. Agent Mental Models and Bayesian Rules as a Tool to Create Opinion Dynamics Models. Physics. 2024; 6(3):1013-1031. https://doi.org/10.3390/physics6030062
Chicago/Turabian StyleMartins, André C. R. 2024. "Agent Mental Models and Bayesian Rules as a Tool to Create Opinion Dynamics Models" Physics 6, no. 3: 1013-1031. https://doi.org/10.3390/physics6030062
APA StyleMartins, A. C. R. (2024). Agent Mental Models and Bayesian Rules as a Tool to Create Opinion Dynamics Models. Physics, 6(3), 1013-1031. https://doi.org/10.3390/physics6030062