Age of Information-Aware Networks for Low-Power IoT Sensor Applications
Abstract
:1. Introduction and Background
1.1. Challenges in Low-Power Sensor Networks
1.2. Significance of QoS in Low-Power Networks
1.3. Age of Information
1.4. Lossy Compression
1.5. Paper Layout
2. Quality of Service
2.1. Timeliness
2.2. Reliability
2.3. Application Types
2.3.1. Elastic Applications
2.3.2. Real-Time Applications
3. Architecture
3.1. Overview
3.2. Queue Policy
3.2.1. First-Come First-Served
3.2.2. Last-Come First-Served
3.3. Adaptive Compression
3.3.1. Model-Based Algorithm
3.3.2. Greedy Algorithm
3.4. Scheduler
3.4.1. Slotted ALOHA
3.4.2. Round-Robin
3.4.3. Round-Robin with Priority Scheduler
4. Testing
4.1. Hardware
4.2. Adaptive Compression Results
4.3. Simulation Testing Setup
4.4. Simulation Results
5. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Heble, S.; Kumar, A.; Prasad, K.; Samirana, S.; Rajalakshmi, P.; Desai, U. A low power IoT network for smart agriculture. In Proceedings of the 2018 IEEE 4th World Forum on Internet of Things, Singapore, 5–8 February 2018; pp. 609–614. [Google Scholar]
- Kjellby, R.; Cenkeramaddi, L.; Frøytlog, A.; Lozano, B.; Soumya, J.; Bhange, M. Long-range and Self-powered IoT Devices for Agriculture and Aquaponics Based on Multi-hop Topology. In Proceedings of the 2019 IEEE 5th World Forum on Internet of Things, Limerick, Ireland, 15–18 April 2019; pp. 545–549. [Google Scholar]
- Macaraeg, K.; Hilario, C.; Amabatali, C. LoRa-based mesh network for off-grid emergency communications. In Proceedings of the IEEE Global Humanitarian Technology Conference, Online, 29 October–1 November 2020. [Google Scholar]
- Saraereh, O.; Alsaraira, A.; Khan, I.; Uthansakul, P. Performance evaluation of UAV-enabled LoRa networks for disaster management applications. Sensors 2020, 20, 2396. [Google Scholar] [CrossRef] [PubMed]
- Kaul, S.; Gruteser, M.; Rai, V.; Kenney, J. Minimizing the age of information in vehicular networks. In Proceedings of the 2011 IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks, Salt Lake City, UT, USA, 27–30 June 2011; pp. 350–358. [Google Scholar]
- Chen, X.; Gatsis, K.; Hassani, H.; Bidokhti, S. Age of information in random access channels. IEEE Trans. Inf. Theory 2022, 68, 6548–6568. [Google Scholar] [CrossRef]
- Kam, C.; Kompella, S.; Nguyen, G.D.; Wieselthier, J.E.; Ephremides, A. Towards an effective age of information: Remote estimation of a Markov source. In Proceedings of the IEEE INFOCOM 2018—IEEE Conference on Computer Communications Workshops, Honolulu, HI, USA, 15–19 April 2018; pp. 367–372. [Google Scholar]
- Wang, M.; Chen, W.; Ephremides, A. Reconstruction of counting process in real-time: The freshness of information through queues. In Proceedings of the 2019 IEEE International Conference on Communications, Shanghai, China, 20–24 May 2019. [Google Scholar] [CrossRef]
- Chache, F.; Maxon, S.; Narayanan, R.; Bharadwaj, R. Improving quality of service in a mesh network using age of information. In Proceedings of the 2022 IEEE Military Communications Conference, Rockville, MD, USA, 28 November–2 December 2022; pp. 649–654. [Google Scholar]
- Yates, R.D.; Sun, Y.; Brown, D.; Kaul, S.; Modiano, E.; Ulukus, S. Age of information: An introduction and survey. IEEE J. Sel. Areas Commun. 2021, 39, 1183–1210. [Google Scholar] [CrossRef]
- Little, J.D.C. A proof for the queuing formula: L = λW. Oper. Res. 1961, 9, 383–387. [Google Scholar] [CrossRef]
- Morimura, H. On the relation between the distributions of the queue size and the waiting time. Kodai Math. Semin. Rep. 1962, 14, 6–19. [Google Scholar] [CrossRef]
- Neely, M.J. Stochastic Network Optimization with Application to Communication and Queueing Systems; Springer Nature: Geneva, Switzerland, 2010. [Google Scholar]
- Ramanujan, R.; Newhouse, J.; Ahamad, M. Adaptive streaming of MPEG video over IP networks. In Proceedings of the 22nd Annual Conference on Local Computer Networks, Minneapolis, MN, USA, 2–5 November 1997; pp. 398–409. [Google Scholar]
- Yazdani, N.; Lucani, D. Online compression of multiple IoT sources reduces the age of information. IEEE Internet Things J. 2021, 8, 14514–14530. [Google Scholar] [CrossRef]
- Hu, S.; Chen, W. Balancing data freshness and distortion in real-time status updating with lossy compression. In Proceedings of the IEEE Conference on Computer Communications Workshops, Online, 6–9 July 2020; pp. 13–18. [Google Scholar]
- Zhong, J.; Yates, R.; Soljanin, E. Backlog-adaptive compression: Age of information. In Proceedings of the 2017 IEEE International Symposium on Information Theory, Aachen, Germany, 25–30 June 2017; pp. 566–570. [Google Scholar]
- Hu, S.; Chen, W. Joint lossy compression and power allocation in low latency wireless communications for IIoT: A cross-layer approach. IEEE Trans. Commun. 2021, 69, 5106–5120. [Google Scholar] [CrossRef]
- Yang, M. Low bit rate speech coding. IEEE Potentials 2004, 23, 32–36. [Google Scholar] [CrossRef]
- Lindstrom, P.; Isenburg, M. Fast and efficient compression of floating-point data. IEEE Trans. Vis. Comput. Graph. 2006, 12, 1245–1250. [Google Scholar] [CrossRef] [PubMed]
- Lindstrom, P. Fixed-rate compressed floating-point arrays. IEEE Trans. Vis. Comput. Graph. 2014, 20, 2674–2683. [Google Scholar] [CrossRef] [PubMed]
- Lindstrom, P. Error Distributions of Lossy Floating-Point Compressors. United States. Available online: https://www.osti.gov/servlets/purl/1526183 (accessed on 16 February 2023).
- Jha, S.; Hassan, M. Engineering Internet QoS; Artech House: London, UK, 2002. [Google Scholar]
- Kosta, A.; Pappas, N.; Angelakis, V. Age of information: A new concept, metric, and tool. Found. Trends® Netw. 2017, 12, 162–259. [Google Scholar] [CrossRef]
- TensorFlow. Basic Classification: Classify Images of Clothing. Available online: https://www.tensorflow.org/tutorials/keras/classification (accessed on 16 February 2023).
- Xiao, H.; Rasul, K.; Vollgraf, R. Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms. arXiv 2017, arXiv:1708.07747. [Google Scholar]
- Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.; Schulman, J.; Tang, J.; Zaremba, W. OpenAI Gym. arXiv 2016, arXiv:1606.01540. [Google Scholar]
- Kam, C.; Kompella, S.; Nguyen, G.D.; Wieselthier, J.E.; Ephremides, A. Modeling the age of information in emulated ad hoc networks. In Proceedings of the 2017 IEEE Military Communications Conference, Baltimore, MD, USA, 23–25 October 2017; pp. 436–441. [Google Scholar]
- Bracciale, L.; Loreti, P. Lyapunov drift-plus-penalty optimization for queues with finite capacity. IEEE Commun. Lett. 2020, 24, 2555–2558. [Google Scholar] [CrossRef]
- Grilo, A.; Macedo, M.; Nunes, M. A scheduling algorithm for QoS support in IEEE802. 11 networks. IEEE Wirel. Commun. 2003, 10, 36–43. [Google Scholar] [CrossRef]
- Li, L.; Li, S.; Zhao, S. QoS-aware scheduling of services-oriented internet of things. IEEE Trans. Ind. Inform. 2014, 10, 1497–1505. [Google Scholar]
- Li, C.; Xiao, Y.; Tu, Z.; Chu, D.; Wang, C.; Wang, L. A fast real-time QoS-aware service selection algorithm. In Proceedings of the 2021 IEEE World Congress on Services, Chicago, IL, USA, 5–10 September 2021; pp. 72–77. [Google Scholar]
- Chache, F.; Maxon, S.; Narayanan, R.; Bharadwaj, R. Distributed network communications using B.A.T.M.A.N. algorithm over LoRa. In Proceedings of the SPIE Conference in Radar Sensor Technology XXV, Online, 12 April 2021; p. 11742. [Google Scholar] [CrossRef]
- Tessaro, L.; Raffaldi, C.; Rossi, M.; Brunelli, D. Lightweight synchronization algorithm with self-calibration for Industrial LoRa sensor networks. In Proceedings of the Workshop on Meteorology for Industry 4.0 and IoT, Brescia, Italy, 16–18 April 2018; pp. 259–263. [Google Scholar]
- Lawrence, R. ALOHA packet system with and without slots and capture. SIGCOMM Comput. Commun. 1975, 5, 28–42. [Google Scholar]
- Abramson, N. The throughput of packet broadcasting channels. IEEE Trans. Commun. 1977, 25, 117–128. [Google Scholar] [CrossRef]
- Semtech Corporation. LoRa Modulation Basics; Application Note AN 1200.22; Semtech Corporation: Camarillo, CA, USA, 2015. [Google Scholar]
- Lingua Franca Handbook. Available online: https://www.lf-lang.org/ (accessed on 16 February 2023).
- Alawad, F.; Kraemer, F. Value of information in wireless sensor network applications and the IoT: A review. IEEE Sens. J. 2022, 22, 9228–9245. [Google Scholar] [CrossRef]
- Ayan, O.; Vilgelm, M.; Klügel, M.; Hirche, S.; Kellerer, W. Age-of-information vs. value-of-information scheduling for cellular networked control systems. In Proceedings of the 10th ACM/IEEE International Conference on Cyber-Physical Systems, Montreal, QC, USA, 16–18 April 2019; pp. 109–117. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chache, F.M.; Maxon, S.; Narayanan, R.M.; Bharadwaj, R. Age of Information-Aware Networks for Low-Power IoT Sensor Applications. IoT 2024, 5, 816-834. https://doi.org/10.3390/iot5040037
Chache FM, Maxon S, Narayanan RM, Bharadwaj R. Age of Information-Aware Networks for Low-Power IoT Sensor Applications. IoT. 2024; 5(4):816-834. https://doi.org/10.3390/iot5040037
Chicago/Turabian StyleChache, Frederick M., Sean Maxon, Ram M. Narayanan, and Ramesh Bharadwaj. 2024. "Age of Information-Aware Networks for Low-Power IoT Sensor Applications" IoT 5, no. 4: 816-834. https://doi.org/10.3390/iot5040037
APA StyleChache, F. M., Maxon, S., Narayanan, R. M., & Bharadwaj, R. (2024). Age of Information-Aware Networks for Low-Power IoT Sensor Applications. IoT, 5(4), 816-834. https://doi.org/10.3390/iot5040037