Carbon Nanotubes Modified by BiMo Metal Oxides for Oxidative Dehydrogenation of 1-Butene to 1,3-Butadiene without Steam
Abstract
:1. Introduction
2. Experimental
2.1. Reagents and Materials
2.2. Synthesis of Catalyst
2.3. Characterization of the Catalysts
2.4. Evaluation of Oxidative Dehydrogenation of 1-Butene
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Jung, J.C.; Lee, H.; Song, I.K. Production of 1,3-butadiene from C4 raffinate-3 through oxidative dehydrogenation of n-butene over bismuth molybdate catalysts. Catal. Surv. Asia 2009, 13, 78–93. [Google Scholar] [CrossRef]
- Liu, L.L.; Zhou, X.J.; Guo, L.X.; Yan, S.J.; Li, Y.J.; Jiang, S.; Tai, X.S. Bimetallic Au–Pd alloy nanoparticles supported on MIL-101(Cr) as highly efficient catalysts for selective hydrogenation of 1,3-butadiene. RSC Adv. 2020, 10, 33417–33427. [Google Scholar] [CrossRef]
- Zeng, T.Q.; Sun, G.; Miao, C.X.; Yan, G.; Ye, Y.C.; Yang, W.M.; Sautet, P. Stabilizing oxidative dehydrogenation active sites at high temperature with steam: ZnFe2O4-catalyzed oxidative dehydrogenation of 1-butene to 1,3-butadiene. ACS Catal. 2020, 10, 12888–12897. [Google Scholar] [CrossRef]
- Gao, M.X.; Zhang, M.H.; Li, Y.H. Transformation of bioethanol to 1,3-butadiene and other bulk chemicals over the surface of Mg–Al catalysts. RSC Adv. 2017, 7, 26935–26942. [Google Scholar] [CrossRef] [Green Version]
- Park, J.H.; Shin, C.H. Oxidative dehydrogenation of butenes to butadiene over Bi-Fe-Me (Me = Ni, Co, Zn, Mn and Cu) -Mo oxide catalysts. J. Ind. Eng. Chem. 2015, 21, 683–688. [Google Scholar] [CrossRef]
- Li, X.Y.; Cheng, D.G.; Chen, F.Q.; Zhan, X.L. Dual bed catalyst system for oxidative dehydrogenation of mixed-butenes: A synergistic mechanism. Zhejiang Univ. Sci. A 2017, 18, 225–233. [Google Scholar] [CrossRef]
- Sobolev, V.I.; Koltunov, K.Y.; Zenkovets, G.A. Oxidative dehydrogenation of 1-butene to 1,3-butadiene over a multicomponent bismuth molybdate catalyst: Influence of C3-C4 hydrocarbons. Catal. Lett. 2017, 147, 310–317. [Google Scholar] [CrossRef]
- Kiyokawa, T.; Hagihara, T.; Ikenaga, N. Oxidative dehydrogenation of n-butene with V–Mg complex oxide with added trivalent metal oxide. ChemistrySelect 2019, 4, 906–913. [Google Scholar] [CrossRef]
- Liu, X.; Duan, L.H.; Yang, W.S.; Zhu, X.F. Oxidative dehydrogenation of n-butane to butenes on Mo-doped VMgO catalysts. RSC Adv. 2017, 7, 34131–34137. [Google Scholar] [CrossRef] [Green Version]
- Yan, W.J.; Kouk, Q.Y.; Luo, J.Z.; Liu, Y.; Borgna, A. Catalytic oxidative dehydrogenation of 1-butene to 1,3-butadiene using CO2. Catal. Commun. 2014, 46, 208–212. [Google Scholar] [CrossRef]
- Dasireddy, V.D.; Huš, M.; Likoza, B. Effects of Pt0-PtOx particle size on 1-butene oxidative dehydrogenation to 1,3-butadiene using CO2 as soft oxidant. Catal. Sci. Technol. 2017, 7, 3291–3302. [Google Scholar] [CrossRef] [Green Version]
- Yan, B.; Wang, B.L.; Wang, L.Y.; Jiang, T. Ce-doped mesoporous alumina supported Fe-based catalyst with high activity for oxidative dehydrogenation of 1-butene using CO2 as soft oxidant. J. Porous Mater. 2019, 26, 1269–1277. [Google Scholar] [CrossRef]
- Furukawa, S.; Endo, M.; Komatsu, T. Bifunctional catalytic system effective for oxidative dehydrogenation of 1-butene and n-butane using Pd-based intermetallic compounds. ACS Catal. 2014, 4, 3533–3542. [Google Scholar] [CrossRef]
- Kiyokawa, T.; Ikenaga, N. Oxidative dehydrogenation of but-1-ene with lattice oxygen in ferrite catalysts. Appl. Catal. A Gen. 2017, 536, 97–103. [Google Scholar] [CrossRef]
- Li, X.Y.; Cheng, D.G.; Zhao, Z.J.; Chen, F.Q.; Gong, J.L. Temperature-induced deactivation mechanism of ZnFe2O4 for oxidative dehydrogenation of 1-butene. React. Chem. Eng. 2017, 2, 215–225. [Google Scholar] [CrossRef]
- Yang, B.Y.; Liu, L.; Zou, G.J.; Luo, X.; Zhu, H.L.; Xu, S. The roles of ZnFe2O4 and α-Fe2O3 in the biphasic catalyst for the oxidative dehydrogenation of n-butene. J. Catal. 2020, 381, 70–77. [Google Scholar] [CrossRef]
- Wan, C.; Cheng, G.D.; Chen, F.Q.; Zhan, X.L. Oxidative dehydrogenation of 1-butene over vanadium modified bismuth molybdate catalyst: An insight into mechanism. RSC Adv. 2015, 5, 42609–42615. [Google Scholar] [CrossRef]
- Park, J.H.; Noh, H.; Park, J.W.; Row, K.H.; Jung, K.D.; Shin, C.H. Oxidative dehydrogenation of n-butenes to 1,3-butadiene over BiMoFe0.65Px catalysts: Effect of phosphorous contents. Res. Chem. Intermed. 2011, 37, 1125–1134. [Google Scholar] [CrossRef]
- Yan, B.; Wang, L.Y.; Wang, B.L.; Alam, F.; Xiao, Z.Z.; Li, J.; Jiang, T. Constructing a high-efficiency iron-based catalyst for carbon dioxide oxidative dehydrogenation of 1-butene: The role of oxygen mobility and proposed reaction mechanism. Appl. Catal. A Gen. 2019, 572, 71–79. [Google Scholar] [CrossRef]
- Jung, J.C.; Lee, H.; Kim, H.; Chung, Y.M.; Kim, T.J.; Lee, S.J.; Oh, S.H.; Kim, Y.S.; Song, I.K. A synergistic effect of α-Bi2Mo3O12 and γ-Bi2MoO6 catalysts in the oxidative dehydrogenation of C4 raffinate-3 to 1,3-butadiene. J. Mol. Catal. A Chem. 2007, 271, 261–265. [Google Scholar] [CrossRef]
- Jung, J.C.; Lee, H.; Kim, H.; Chung, Y.M.; Kim, T.J.; Lee, S.J.; Oh, S.H.; Kim, Y.S.; Song, I.K. Unusual catalytic behavior of β-Bi2Mo2O9 in the oxidative dehydrogenation of n-butene to 1,3-butadiene. J. Mol. Catal. A Chem. 2007, 264, 237–240. [Google Scholar] [CrossRef]
- Park, J.H.; Shin, C.H. Influence of phosphorous addition on Bi3Mo2Fe1 oxide catalysts for the oxidative dehydrogenation of 1-butene. Korean J. Chem. Eng. 2016, 33, 823–830. [Google Scholar] [CrossRef]
- Wan, C.; Cheng, G.D.; Chen, F.Q.; Zhan, X.L. Effects of zirconium content on the catalytic performance of BiMoZrx in the oxidative dehydrogenation of 1-butene to 1,3-butadiene. J. Chem. Technol. Biot. 2016, 91, 353–358. [Google Scholar] [CrossRef]
- Wan, C.; Cheng, G.D.; Chen, F.Q.; Zhan, X.L. The role of active phase in Ce modified BiMo catalysts for oxidative dehydrogenation of 1-butene. Catal. Today 2016, 264, 180–184. [Google Scholar] [CrossRef]
- Wan, C.; Cheng, G.D.; Chen, F.Q.; Zhan, X.L. Characterization and kinetic study of BiMoLax oxide catalysts for oxidative dehydrogenation of 1-butene to1,3-butadiene. Chem. Eng. Sci. 2015, 135, 553–558. [Google Scholar] [CrossRef]
- Jung, J.C.; Lee, H.W.; Park, D.R.; Seo, J.G.; Song, I.K. Effect of calcination temperature on the catalytic performance of γ-Bi2MoO6 in the oxidative dehydrogenation of n-butene to 1,3-butadiene. Catal. Lett. 2009, 131, 401–405. [Google Scholar] [CrossRef]
- Jung, J.C.; Kim, H.; Choi, A.S.; Chung, Y.M.; Kim, T.J.; Lee, S.J.; Oh, S.H.; Song, I.K. Effect of nickel precursor on the catalytic performance of Ni/Al2O3 catalysts in the hydrodechlorination of 1,1,2-trichloroethane. J. Mol. Catal. A 2006, 256, 178–183. [Google Scholar]
- Jung, J.C.; Lee, H.; Seo, J.G.; Park, S.Y.; Chung, Y.M.; Kim, T.J.; Lee, S.J.; Oh, S.H.; Kim, Y.S.; Song, I.K. Oxidative dehydrogenation of n-butene to 1,3-butadiene over multicomponent bismuth molybdate (MII9Fe3Bi1Mo12O51) catalysts: Effect of divalent metal (MII). Catal. Today 2009, 141, 325–329. [Google Scholar] [CrossRef]
- Tabani, H.; Bameri, A.E.; Abedi, H.; Hatefi, R.; Gorjizadeh, A.; Moghaddam, A.Z. Introduction of nitrogen doped graphene nanosheets as efficient adsorbents for nitrate removal from aqueous samples. J. Environ. Health. Sci. Eng. 2021, 19, 1875–1886. [Google Scholar] [CrossRef]
- Tabani, H.; Khodaei, K.; Moghaddam, A.Z.; Alexovič, M.; Movahed, S.K.; Zare, F.D.; Dabiri, M. Introduction of graphene-periodic mesoporous silica as a new sorbent for removal: Experiment and simulation. Res. Chem. Intermed. 2019, 45, 1795–1813. [Google Scholar] [CrossRef]
- Wang, K.; Lu, Z.J.; Li, Y.Z.; Wang, S.Q.; Cao, Y.L. Interfacial engineering of bimetallic carbide and cobalt encapsulated in nitrogen-doped carbon nanotubes for electrocatalytic oxygen reduction. ChemSusChem 2020, 13, 5539–5548. [Google Scholar] [CrossRef] [PubMed]
- Wan, C.; Sun, L.; Xu, L.X.; Cheng, D.G.; Chen, F.Q.; Zhan, X.L.; Yang, Y.R. Novel NiPt alloy nanoparticle decorated 2D layered g-C3N4 Nanosheets: A highly efficient catalyst for hydrogen generation from hydrous hydrazine. J. Mater. Chem. A 2019, 7, 8798–8804. [Google Scholar] [CrossRef]
- Zhong, B.; Huang, R.; Su, D.S.; Liu, H.Y. Effect of graphitization of oxygen-modified carbon nanotubes in selective oxidation of acrolein. Catal. Today 2019, 330, 142–148. [Google Scholar] [CrossRef]
- Wen, G.D.; Diao, J.Y.; Wu, S.C.; Yang, W.M.; Schlögl, R.; Su, D.S. Acid properties of nanocarbons and their application in oxidative dehydrogenation. ACS Catal. 2015, 5, 3600–3608. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, X.; Blume, R.; Zhang, A.H.; Schlögl, R.; Su, D.S. Surface-modified carbon nanotubes catalyze oxidative dehydrogenation of n-butane. Science 2008, 322, 73–77. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Su, D.S.; Schlögl, R. Oxidative dehydrogenation of 1-butene to butadiene over carbon nanotube catalysts. Carbon 2008, 46, 547–549. [Google Scholar] [CrossRef] [Green Version]
- Chernyak, S.A.; Kustov, A.L.; Stolbov, D.N.; Tedeeva, M.A.; Isaikina, O.Y.; Maslakov, K.I.; Usol’tseva, N.V.; Savilov, S.V. Chromium catalysts supported on carbon nanotubes and graphene nanoflakes for CO2-assisted oxidative dehydrogenation of propane. Appl. Surf. Sci. 2022, 578, 152099. [Google Scholar] [CrossRef]
- Wan, C.; Zhou, L.; Xu, S.M.; Jin, B.Y.; Ge, X.; Qian, X.; Xu, L.X.; Chen, F.Q.; Zhan, X.L.; Yang, Y.R. Defect engineered mesoporous graphitic carbon nitride modified with AgPd nanoparticles for enhanced photocatalytic hydrogen evolution from formic acid. Chem. Eng. J. 2022, 429, 132388. [Google Scholar] [CrossRef]
- Zhang, M.Y.; Liu, L.; Lu, S.; Xu, L.X.; An, Y.; Wan, C. Facile fabrication of NiPt/CNTs as an efficient catalyst for hydrogen production from hydrous hydrazine. ChemistrySelect 2019, 4, 10494–10500. [Google Scholar] [CrossRef]
- Wan, C.; Zhou, L.; Sun, L.; Xu, L.X.; Cheng, D.G.; Chen, F.Q.; Zhan, X.L.; Yang, Y.R. Boosting visible-light-driven hydrogen evolution from formic acid over AgPd/2D g-C3N4 nanosheets Mott-Schottky photocatalyst. Chem. Eng. J. 2020, 396, 125229. [Google Scholar] [CrossRef]
- Shi, L.; Qi, W.; Liu, W.; Yan, P.Q.; Li, F.; Sun, J.M.; Su, D.S. Carbon nitride modified nanocarbon materials as efficient non-metallic catalysts for alkane dehydrogenation. Catal. Today 2018, 301, 48–54. [Google Scholar] [CrossRef]
- Hu, Z.P.; Chen, C.; Ren, J.T.; Yuan, Z.Y. Direct dehydrogenation of propane to propylene on surface-oxidized multiwall carbon nanotubes. Appl. Catal. A Gen. 2018, 559, 85–93. [Google Scholar] [CrossRef]
- Han, Z.F.; Xue, X.L.; Wu, J.M.; Lang, W.Z.; Guo, Y.J. Preparation and catalytic properties of mesoporous nV-MCM-41 for propane oxidative dehydrogenation in the presence of CO2. Chin. J. Catal. 2018, 39, 1099–1109. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Gao, Y.Y.; Zhang, Z.B.; Gu, T.; Liang, X.B.; Wang, L.Z. Research Progress on Functional Properties of Novel High-Entropy Metallic Glasses. Chin. J. Rare Met. 2021, 45, 717–727. [Google Scholar]
Catalysts | Conversion (%) | Selectivity (%) | Yield (%) | SBET (m2·g−1) | Pore Volume (cm3·g−1) |
---|---|---|---|---|---|
CNTs | 40.9 | 59.8 | 24.5 | 107.9 | 0.33 |
BiMo | 60 | 72 | 43.2 | 1.2 | 0.011 |
0.006(BiMo)/CNTs | 67.2 | 58.6 | 39.4 | 86.7 | 0.37 |
0.012(BiMo)/CNTs | 81.5 | 59.1 | 48.2 | 76.1 | 0.27 |
0.018(BiMo)/CNTs | 86.7 | 60.2 | 52.2 | 75.1 | 0.24 |
0.024(BiMo)/CNTs | 79.5 | 58.2 | 46.3 | 48.3 | 0.23 |
0.024Bi/CNTs | 41.9 | 60.1 | 25.2 | 83.6 | 0.28 |
0.024Mo/CNTs | 43.1 | 61.2 | 26.4 | 72.4 | 0.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Liang, Y.; Li, G.; Wan, C. Carbon Nanotubes Modified by BiMo Metal Oxides for Oxidative Dehydrogenation of 1-Butene to 1,3-Butadiene without Steam. Chemistry 2022, 4, 370-379. https://doi.org/10.3390/chemistry4020027
Wu J, Liang Y, Li G, Wan C. Carbon Nanotubes Modified by BiMo Metal Oxides for Oxidative Dehydrogenation of 1-Butene to 1,3-Butadiene without Steam. Chemistry. 2022; 4(2):370-379. https://doi.org/10.3390/chemistry4020027
Chicago/Turabian StyleWu, Jiao, Yu Liang, Gui Li, and Chao Wan. 2022. "Carbon Nanotubes Modified by BiMo Metal Oxides for Oxidative Dehydrogenation of 1-Butene to 1,3-Butadiene without Steam" Chemistry 4, no. 2: 370-379. https://doi.org/10.3390/chemistry4020027
APA StyleWu, J., Liang, Y., Li, G., & Wan, C. (2022). Carbon Nanotubes Modified by BiMo Metal Oxides for Oxidative Dehydrogenation of 1-Butene to 1,3-Butadiene without Steam. Chemistry, 4(2), 370-379. https://doi.org/10.3390/chemistry4020027