Atomic Details of Biomineralization Proteins Inspiring Protein Design and Reengineering for Functional Biominerals
Abstract
:1. Introduction
2. Classical Protein Templates for the Nucleation and Growth of Biominerals
2.1. Pearls
2.2. Protein Templates and Biominerals in Plants
3. Polycondensation and Depolymerization of Silicates
4. Protein Tools for the Synthesis of Magnetotactic Sensing Biominerals
5. Design of Peptides and Proteins for the Synthesis of Artificial Biominerals
6. Re-Purposed Enzymes for the Synthesis of Biominerals
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Veis, A. A Window on Biomineralization. Science 2005, 307, 1419–1420. [Google Scholar] [CrossRef] [PubMed]
- Estroff, L.A. Introduction: Biomineralization. Chem. Rev. 2008, 108, 4329–4331. [Google Scholar] [CrossRef] [PubMed]
- Sancetta, C. On biomineralization. Mar. Geol. 1993, 110, 184–185. [Google Scholar] [CrossRef]
- Skinner, H.C.W.; Ehrlich, H. Biomineralization. In Treatise on Geochemistry, 2nd ed.; Elsevier: Oxford, UK, 2014; Volume 13, pp. 29–57. ISBN 978-0-08-098300-4. [Google Scholar]
- Ehrlich, H. Biocomposites and Mineralized Tissues. In Biological Materials of Marine Origin; Springer: Dordrecht, The Netherlands, 2014; pp. 91–210. [Google Scholar] [CrossRef]
- Lowenstam, H.A. Minerals Formed by Organisms. Science 1981, 211, 1126–1131. [Google Scholar] [CrossRef]
- Muller, W.E.G. Molecular Biomineralization: Aquatic Organisms forming Extraordinary Materials; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011; ISBN 978-3-642-21229-1. [Google Scholar]
- Nakano, T.; Ikawa, N.; Ozimek, L. Chemical composition of chicken eggshell and shell membranes. Poult. Sci. 2003, 82, 510–514. [Google Scholar] [CrossRef]
- Gautron, J.; Stapane, L.; Le Roy, N.; Nys, Y.; Rodriguez-Navarro, A.B.; Hincke, M.T. Avian eggshell biomineralization: An update on its structure, mineralogy and protein tool kit. BMC Mol. Cell Biol. 2021, 22, 11. [Google Scholar] [CrossRef]
- Müller, F.D.; Schüler, D.; Pfeiffer, D. A Compass to Boost Navigation: Cell Biology of Bacterial Magnetotaxis. J. Bacteriol. 2020, 202, e00398-20. [Google Scholar] [CrossRef]
- Rodríguez-Navarro, A.B.; Marie, P.; Nys, Y.; Hincke, M.T.; Gautron, J. Amorphous calcium carbonate controls avian eggshell mineralization: A new paradigm for understanding rapid eggshell calcification. J. Struct. Biol. 2015, 190, 291–303. [Google Scholar] [CrossRef]
- Giesa, T.; Buehler, M.J. Nanoconfinement and the Strength of Biopolymers. Annu. Rev. Biophys. 2013, 42, 651–673. [Google Scholar] [CrossRef]
- Kirschvink, J.L.; Walker, M.M.; Diebel, C.E. Magnetite-based magnetoreception. Curr. Opin. Neurobiol. 2001, 11, 462–467. [Google Scholar] [CrossRef]
- Cadiou, H.; McNaughton, P. Avian magnetite-based magnetoreception: A physiologist’s perspective. J. R. Soc. Interface 2010, 7, S193–S205. [Google Scholar] [CrossRef]
- Amor, M.; Ceballos, A.; Wan, J.; Simon, C.P.; Aron, A.T.; Chang, C.J.; Hellman, F.; Komeili, A. Magnetotactic Bacteria Accumulate a Large Pool of Iron Distinct from Their Magnetite Crystals. Appl. Environ. Microbiol. 2020, 86, e01278-20. [Google Scholar] [CrossRef]
- Pósfai, M.; Kasama, T.; Dunin-Borkowski, R.E. Biominerals at the nanoscale: Biominerals at the nanoscale: Transmission electron microscopy methods for studying the special properties of biominerals. Eur. Mineral. Union Notes Mineral. 2013, 14, 377–435. [Google Scholar] [CrossRef]
- McCausland, H.C.; Komeili, A. Magnetic genes: Studying the genetics of biomineralization in magnetotactic bacteria. PLoS Genet. 2020, 16, e1008499. [Google Scholar] [CrossRef]
- Schüler, D. Formation of magnetosomes in magnetotactic bacteria. J. Mol. Microbiol. Biotechnol. 1999, 1, 79–86. [Google Scholar]
- Phoenix, V.R.; Konhauser, K.O. Benefits of bacterial biomineralization. Geobiology 2008, 6, 303–308. [Google Scholar] [CrossRef]
- Dobro, M.J.; Oikonomou, C.M.; Piper, A.; Cohen, J.; Guo, K.; Jensen, T.; Tadayon, J.; Donermeyer, J.; Park, Y.; Solis, B.A.; et al. Uncharacterized Bacterial Structures Revealed by Electron Cryotomography. J. Bacteriol. 2017, 199, e00100-17. [Google Scholar] [CrossRef]
- Monteil, C.L.; Vallenet, D.; Menguy, N.; Benzerara, K.; Barbe, V.; Fouteau, S.; Cruaud, C.; Floriani, M.; Viollier, E.; Adryanczyk, G.; et al. Ectosymbiotic bacteria at the origin of magnetoreception in a marine protist. Nat. Microbiol. 2019, 4, 1088–1095. [Google Scholar] [CrossRef]
- Medakovi, D.; Popovi, S. Unusual Crystal Formation in Organisms-Exceptions that Confirm Biomineralization Rules. In Crystallization and Materials Science of Modern Artificial and Natural Crystals; BoD–Books on Demand: Nordstedt, Germany, 2012. [Google Scholar]
- Sugawara-Narutaki, A.; Nakamura, J.; Ohtsuki, C. Polymer-induced liquid precursors (PILPs) and bone regeneration. In Bioceramics; Elsevier: Amsterdam, The Netherlands, 2021; pp. 391–398. [Google Scholar] [CrossRef]
- Knoll, A.H. Biomineralization and Evolutionary History. Rev. Miner. Geochem. 2003, 54, 329–356. [Google Scholar] [CrossRef]
- Lefèvre, C.T.; Bazylinski, D.A. Ecology, Diversity, and Evolution of Magnetotactic Bacteria. Microbiol. Mol. Biol. Rev. 2013, 77, 497–526. [Google Scholar] [CrossRef]
- Böhm, C.F.; Harris, J.; Schodder, P.I.; Wolf, S.E. Bioinspired Materials: From Living Systems to New Concepts in Materials Chemistry. Materials 2019, 12, 2117. [Google Scholar] [CrossRef]
- Crichton, R. Biomineralization. In Biological Inorganic Chemistry; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Cranford, S.W.; Buehler, M.J. The future of biomateriomics. In Biomateriomics; Springer: Dordrecht, The Netherlands, 2012; Volume 165. [Google Scholar]
- Harris, J.; Böhm, C.F.; Wolf, S.E. Universal structure motifs in biominerals: A lesson from nature for the efficient design of bioinspired functional materials. Interface Focus 2017, 7, 20160120. [Google Scholar] [CrossRef]
- Vinn, O. The Role of Aragonite in Producing the Microstructural Diversity of Serpulid Skeletons. Minerals 2021, 11, 1435. [Google Scholar] [CrossRef]
- Burley, S.K.; Bhikadiya, C.; Bi, C.; Bittrich, S.; Chen, L.; Crichlow, G.V.; Christie, C.H.; Dalenberg, K.; Di Costanzo, L.; Duarte, J.M.; et al. RCSB Protein Data Bank: Powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res. 2020, 49, D437–D451. [Google Scholar] [CrossRef]
- Boskey, A.L.; Villarreal-Ramirez, E. Intrinsically disordered proteins and biomineralization. Matrix Biol. 2016, 52, 43–59. [Google Scholar] [CrossRef]
- Sodek, J.; Ganss, B.; McKee, M.D. Osteopontin. Crit. Rev. Oral Biol. Med. 2000, 11, 279–303. [Google Scholar] [CrossRef]
- Davidov, G.; Abelya, G.; Zalk, R.; Izbicki, B.; Shaibi, S.; Spektor, L.; Shagidov, D.; Meyron-Holtz, E.G.; Zarivach, R.; Frank, G.A. Folding of an Intrinsically Disordered Iron-Binding Peptide in Response to Sedimentation Revealed by Cryo-EM. J. Am. Chem. Soc. 2020, 142, 19551–19557. [Google Scholar] [CrossRef]
- Kim, I.W.; Collino, S.; Morse, A.D.E.; Evans, J.S. A Crystal Modulating Protein from Molluscan Nacre That Limits the Growth of Calcite In Vitro. Cryst. Growth Des. 2006, 6, 1078–1082. [Google Scholar] [CrossRef]
- Collino, S.; Kim, I.W.; Evans, J.S. Identification and Structural Characterization of an Unusual RING-Like Sequence within an Extracellular Biomineralization Protein, AP7. Biochemistry 2008, 47, 3745–3755. [Google Scholar] [CrossRef] [PubMed]
- Jackson, A.P.; Vincent, J.F.V.; Turner, R.M. The mechanical design of nacre. Proc. R. Soc. London B Biol. Sci. 1988, 234, 415–440. [Google Scholar]
- Chen, Y.; Feng, Y.; Deveaux, J.G.; Masoud, M.A.; Chandra, F.S.; Chen, H.; Zhang, D.; Feng, L. Biomineralization Forming Process and Bio-inspired Nanomaterials for Biomedical Application: A Review. Minerals 2019, 9, 68. [Google Scholar] [CrossRef]
- Zhang, S.; Jiang, Z.; Shi, J.; Wang, X.; Han, P.; Qian, W. An Efficient, Recyclable, and Stable Immobilized Biocatalyst Based on Bioinspired Microcapsules-in-Hydrogel Scaffolds. ACS Appl. Mater. Interfaces 2016, 8, 25152–25161. [Google Scholar] [CrossRef] [PubMed]
- Di Costanzo, L.; Ghosh, S.; Zardecki, C.; Burley, S.K. Using the Tools and Resources of the RCSB Protein Data Bank. Curr. Protoc. Bioinform. 2016, 55, 1.9.1–1.9.35. [Google Scholar] [CrossRef] [PubMed]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Hoang, Q.Q.; Sicheri, F.; Howard, A.J.; Yang, D.S.C. Bone recognition mechanism of porcine osteocalcin from crystal structure. Nature 2003, 425, 977–980. [Google Scholar] [CrossRef]
- Dowd, T.L.; Rosen, J.F.; Li, A.L.; Gundberg, C.M. The Three-Dimensional Structure of Bovine Calcium Ion-Bound Osteocalcin Using 1H NMR Spectroscopy. Biochemistry 2003, 42, 7769–7779. [Google Scholar] [CrossRef]
- Malashkevich, V.N.; Almo, S.C.; Dowd, T.L. X-ray Crystal Structure of Bovine 3 Glu-Osteocalcin. Biochemistry 2013, 52, 8387–8392. [Google Scholar] [CrossRef]
- Frazão, C.; Simes, D.C.; Coelho, R.; Alves, D.; Williamson, M.K.; Price, P.A.; Cancela, M.L.; Carrondo, M.A. Structural Evidence of a Fourth Gla Residue in Fish Osteocalcin: Biological Implications. Biochemistry 2005, 44, 1234–1242. [Google Scholar] [CrossRef]
- Ruiz-Arellano, R.R.; Medrano, F.J.; Moreno, A.; Romero, A. Structure of struthiocalcin-1, an intramineral protein from Struthio camelus eggshell, in two crystal forms. Acta Crystallogr. Sect. D Biol. Crystallogr. 2015, 71, 809–818. [Google Scholar] [CrossRef]
- Reyes, J.P.; Moreno, A.; Romero, A. Crystal Structure of Ovocleidin-17, a Major Protein of the Calcified Gallus gallus Eggshell: Implications in the calcite mineral growth pattern. J. Biol. Chem. 2004, 279, 40876–40881. [Google Scholar] [CrossRef]
- Sicheri, F.; Yang, D.S.C. Ice-binding structure and mechanism of an antifreeze protein from winter flounder. Nature 1995, 375, 427–431. [Google Scholar] [CrossRef]
- Nishimiya, Y.; Kondo, H.; Takamichi, M.; Sugimoto, H.; Suzuki, M.; Miura, A.; Tsuda, S. Crystal Structure and Mutational Analysis of Ca2+-Independent Type II Antifreeze Protein from Longsnout Poacher, Brachyopsis rostratus. J. Mol. Biol. 2008, 382, 734–746. [Google Scholar] [CrossRef]
- Nakae, S.; Shionyu, M.; Ogawa, T.; Shirai, T. Structures of jacalin-related lectin PPL3 regulating pearl shell biomineralization. Proteins Struct. Funct. Bioinform. 2018, 86, 644–653. [Google Scholar] [CrossRef]
- Görlich, S.; Samuel, A.J.; Best, R.J.; Seidel, R.; Vacelet, J.; Leonarski, F.K.; Tomizaki, T.; Rellinghaus, B.; Pohl, D.; Zlotnikov, I. Natural hybrid silica/protein superstructure at atomic resolution. Proc. Natl. Acad. Sci. USA 2020, 117, 31088–31093. [Google Scholar] [CrossRef]
- Fairhead, M.; Johnson, K.A.; Kowatz, T.; McMahon, S.A.; Carter, L.G.; Oke, M.; Liu, H.; Naismith, J.H.; van der Walle, C.F. Crystal structure and silica condensing activities of silicatein α–cathepsin L chimeras. Chem. Commun. 2008, 15, 1765–1767. [Google Scholar] [CrossRef]
- Zeytuni, N.; Ozyamak, E.; Ben-Harush, K.; Davidov, G.; Levin, M.; Gat, Y.; Moyal, T.; Brik, A.; Komeili, A.; Zarivach, R. Self-recognition mechanism of MamA, a magnetosome-associated TPR-containing protein, promotes complex assembly. Proc. Natl. Acad. Sci. USA 2011, 108, E480–E487. [Google Scholar] [CrossRef]
- Uebe, R.; Keren-Khadmy, N.; Zeytuni, N.; Katzmann, E.; Navon, Y.; Davidov, G.; Bitton, R.; Plitzko, J.M.; Schüler, D.; Zarivach, R. The dual role of MamB in magnetosome membrane assembly and magnetite biomineralization. Mol. Microbiol. 2018, 107, 542–557. [Google Scholar] [CrossRef]
- Quinlan, A.; Murat, D.; Vali, H.; Komeili, A. The HtrA/DegP family protease MamE is a bifunctional protein with roles in magnetosome protein localization and magnetite biomineralization. Mol. Microbiol. 2011, 80, 1075–1087. [Google Scholar] [CrossRef]
- Zeytuni, N.; Uebe, R.; Maes, M.; Davidov, G.; Baram, M.; Raschdorf, O.; Nadav-Tsubery, M.; Kolusheva, S.; Bitton, R.; Goobes, G.; et al. Cation Diffusion Facilitators Transport Initiation and Regulation Is Mediated by Cation Induced Conformational Changes of the Cytoplasmic Domain. PLoS ONE 2014, 9, e92141. [Google Scholar] [CrossRef]
- Bergeron, J.R.; Hutto, R.; Ozyamak, E.; Hom, N.; Hansen, J.; Draper, O.; Byrne, M.E.; Keyhani, S.; Komeili, A.; Kollman, J.M. Structure of the magnetosome-associated actin-like MamK filament at subnanometer resolution. Protein Sci. 2016, 26, 93–102. [Google Scholar] [CrossRef]
- Hershey, D.M.; Ren, X.; Melnyk, R.A.; Browne, P.J.; Ozyamak, E.; Jones, S.R.; Chang, M.C.Y.; Hurley, J.H.; Komeili, A. MamO Is a Repurposed Serine Protease that Promotes Magnetite Biomineralization through Direct Transition Metal Binding in Magnetotactic Bacteria. PLOS Biol. 2016, 14, e1002402. [Google Scholar] [CrossRef]
- Siponen, M.I.; Legrand, P.; Widdrat, M.; Jones, S.R.; Zhang, W.-J.; Chang, M.C.Y.; Faivre, D.; Arnoux, P.; Pignol, D. Structural insight into magnetochrome-mediated magnetite biomineralization. Nature 2013, 502, 681–684. [Google Scholar] [CrossRef]
- Voet, A.R.D.; Noguchi, H.; Addy, C.; Zhang, K.Y.J.; Tame, J.R.H. Biomineralization of a Cadmium Chloride Nanocrystal by a Designed Symmetrical Protein. Angew. Chem. Int. Ed. 2015, 54, 9857–9860. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, H.; Huang, Z.; Yang, M.; Yu, H.; Peng, M.; Yang, Z.; Chen, S. Structural characterization of cystathionine γ-lyase smCSE enables aqueous metal quantum dot biosynthesis. Int. J. Biol. Macromol. 2021, 174, 42–51. [Google Scholar] [CrossRef]
- Thaker, A.; Sirajudeen, L.; Simmons, C.R.; Nannenga, B.L. Structure-guided identification of a peptide for bio-enabled gold nanoparticle synthesis. Biotechnol. Bioeng. 2021, 118, 4867–4873. [Google Scholar] [CrossRef]
- Wei, H.; Wang, Z.; Zhang, J.; House, S.; Gao, Y.-G.; Yang, L.; Robinson, H.; Tan, L.H.; Xing, H.; Hou, C.; et al. Time-dependent, protein-directed growth of gold nanoparticles within a single crystal of lysozyme. Nat. Nanotechnol. 2011, 6, 93–97. [Google Scholar] [CrossRef]
- Butts, C.A.; Swift, J.; Kang, S.-G.; Di Costanzo, L.; Christianson, D.W.; Saven, J.G.; Dmochowski, I.J. Directing Noble Metal Ion Chemistry within a Designed Ferritin Protein. Biochemistry 2008, 47, 12729–12739. [Google Scholar] [CrossRef]
- Kasyutich, O.; Ilari, A.; Fiorillo, A.; Tatchev, D.; Hoell, A.; Ceci, P. Silver Ion Incorporation and Nanoparticle Formation inside the Cavity of Pyrococcus furiosus Ferritin: Structural and Size-Distribution Analyses. J. Am. Chem. Soc. 2010, 132, 3621–3627. [Google Scholar] [CrossRef]
- Tosha, T.; Ng, H.-L.; Bhattasali, O.; Alber, T.; Theil, E.C. Moving Metal Ions through Ferritin-Protein Nanocages from Three-Fold Pores to Catalytic Sites. J. Am. Chem. Soc. 2010, 132, 14562–14569. [Google Scholar] [CrossRef]
- Zoch, M.L.; Clemens, T.L.; Riddle, R.C. New insights into the biology of osteocalcin. Bone 2015, 82, 42–49. [Google Scholar] [CrossRef]
- Rehder, D.S.; Gundberg, C.M.; Booth, S.L.; Borges, C.R. Gamma-Carboxylation and Fragmentation of Osteocalcin in Human Serum Defined by Mass Spectrometry. Mol. Cell. Proteom. 2015, 14, 1546–1555. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Grajeda, J.; Jauregui-Zuniga, D.; Rodriguez-Romero, A.; Hernandez-Santoyo, A.; Bolanos-Garcia, V.; Moreno, A. Crystallization and Preliminary X-ray Analysis of Ovocleidin-17 A Major Protein of the Gallus Gallus Eggshell Calcified Layer. Protein Pept. Lett. 2002, 9, 253–257. [Google Scholar] [CrossRef] [PubMed]
- Zardecki, C.; Dutta, S.; Goodsell, D.S.; Lowe, R.; Voigt, M.; Burley, S.K. PDB-101: Educational resources supporting molecular explorations through biology and medicine. Protein Sci. 2021, 31, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Lakshminarayanan, R.; Valiyaveettil, S.; Rao, V.S.; Kini, M. Purification, Characterization, and in VitroMineralization Studies of a Novel Goose Eggshell Matrix Protein, Ansocalcin. J. Biol. Chem. 2003, 278, 2928–2936. [Google Scholar] [CrossRef]
- Lakshminarayanan, R.; Kini, R.M.; Valiyaveettil, S. Investigation of the role of ansocalcin in the biomineralization in goose eggshell matrix. Proc. Natl. Acad. Sci. USA 2002, 99, 5155–5159. [Google Scholar] [CrossRef]
- Demarchi, B.; Hall, S.; Roncal-Herrero, T.; Freeman, C.L.; Woolley, J.; Crisp, M.K.; Wilson, J.; Fotakis, A.; Fischer, R.; Kessler, B.M.; et al. Protein sequences bound to mineral surfaces persist into deep time. eLife 2016, 5, e17092. [Google Scholar] [CrossRef]
- Saitta, E.T.; Vinther, J.; Crisp, M.K.; Abbott, G.D.; Kaye, T.G.; Pittman, M.; Bull, I.; Fletcher, I.; Chen, X.; Collins, M.J.; et al. Non-avian dinosaur eggshell calcite contains ancient, endogenous amino acids. bioRxiv 2020. [Google Scholar] [CrossRef]
- Gharib, G.; Saeidiharzand, S.; Sadaghiani, A.K.; Koşar, A. Antifreeze Proteins: A Tale of Evolution from Origin to Energy Applications. Front. Bioeng. Biotechnol. 2022, 9, 770588. [Google Scholar] [CrossRef]
- Zhang, G.; Fang, X.; Guo, X.; Li, L.; Luo, R.; Xu, F.; Yang, P.; Zhang, L.; Wang, X.; Qi, H.; et al. The oyster genome reveals stress adaptation and complexity of shell formation. Nature 2012, 490, 49–54. [Google Scholar] [CrossRef]
- Ginebra, M.-P.; Espanol, M.; Maazouz, Y.; Bergez, V.; Pastorino, D. Bioceramics and bone healing. EFORT Open Rev. 2018, 3, 173–183. [Google Scholar] [CrossRef]
- Dhami, N.K.; Reddy, M.S.; Mukherjee, M.S. Biomineralization of calcium carbonates and their engineered applications: A review. Front. Microbiol. 2013, 4, 314. [Google Scholar] [CrossRef]
- Pei, J.; Wang, Y.; Zou, X.; Ruan, H.; Tang, C.; Liao, J.; Si, G.; Sun, P. Extraction, Purification, Bioactivities and Application of Matrix Proteins From Pearl Powder and Nacre Powder: A Review. Front. Bioeng. Biotechnol. 2021, 9, 649665. [Google Scholar] [CrossRef]
- He, H.; Veneklaas, E.J.; Kuo, J.; Lambers, H. Physiological and ecological significance of biomineralization in plants. Trends Plant Sci. 2014, 19, 166–174. [Google Scholar] [CrossRef]
- Weiner, S.; Addadi, L. Crystallization Pathways in Biomineralization. Annu. Rev. Mater. Sci. 2011, 41, 21–40. [Google Scholar] [CrossRef]
- Li, X.; Zhang, W.; Lu, J.; Huang, L.; Nan, D.; Webb, M.A.; Hillion, F.; Wang, L. Templated Biomineralization on Self-Assembled Protein Nanofibers Buried in Calcium Oxalate Raphides of Musa spp. Chem. Mater. 2014, 26, 3862–3869. [Google Scholar] [CrossRef]
- Friddle, R.W.; Battle, K.; Trubetskoy, V.; Tao, J.; Salter, E.A.; Moradian-Oldak, J.; De Yoreo, J.J.; Wierzbicki, A. Single-molecule determination of the face-specific adsorption of Amelogenin’s C-terminus on hydroxyapatite. Angew. Chem. Int. Ed. 2011, 50, 7541–7545. [Google Scholar] [CrossRef]
- Ehrlich, H. Silica biomineralization, Sponges. In Encyclopedia of Geobiology; Encyclopedia of Earth Sciences Series; Springer: Amsterdam, The Netherlands, 2011. [Google Scholar]
- He, C.; Ma, J.; Wang, L. A hemicellulose-bound form of silicon with potential to improve the mechanical properties and regeneration of the cell wall of rice. New Phytol. 2015, 206, 1051–1062. [Google Scholar] [CrossRef]
- Moura, H.; Unterlass, M.M. Biogenic Metal Oxides. Biomimetics 2020, 5, 29. [Google Scholar] [CrossRef]
- Currie, H.A.; Perry, C.C. Silica in Plants: Biological, Biochemical and Chemical Studies. Ann. Bot. 2007, 100, 1383–1389. [Google Scholar] [CrossRef]
- Müller, W.E.; Belikov, S.; Tremel, W.; Perry, C.; Gieskes, W.W.; Boreiko, A.; Schröder, H.C. Siliceous spicules in marine demosponges (example Suberites domuncula). Micron 2005, 37, 107–120. [Google Scholar] [CrossRef]
- Love, G.D.; Grosjean, E.; Stalvies, C.; Fike, D.; Grotzinger, J.P.; Bradley, A.; Kelly, A.E.; Bhatia, M.; Meredith, W.; Snape, C.; et al. Fossil steroids record the appearance of Demospongiae during the Cryogenian period. Nature 2009, 457, 718–721. [Google Scholar] [CrossRef]
- Brümmer, F.; Pfannkuchen, M.; Baltz, A.; Hauser, T.; Thiel, V. Light inside sponges. J. Exp. Mar. Biol. Ecol. 2008, 367, 61–64. [Google Scholar] [CrossRef]
- Shchipunov, Y.; Postnova, I. Cellulose Mineralization as a Route for Novel Functional Materials. Adv. Funct. Mater. 2018, 28, 1705042. [Google Scholar] [CrossRef]
- Otzen, D. The Role of Proteins in Biosilicification. Scientifica 2012, 2012, 867562. [Google Scholar] [CrossRef]
- Müller, W.E.; Wang, X.; Kropf, K.; Ushijima, H.; Geurtsen, W.; Eckert, C.; Tahir, M.N.; Tremel, W.; Boreiko, A.; Schloßmacher, U.; et al. Bioorganic/inorganic hybrid composition of sponge spicules: Matrix of the giant spicules and of the comitalia of the deep sea hexactinellid Monorhaphis. J. Struct. Biol. 2008, 161, 188–203. [Google Scholar] [CrossRef]
- Müller, W.E.; Boreiko, A.; Wang, X.; Belikov, S.; Wiens, M.; Grebenjuk, V.A.; Schloβmacher, U.; Schröder, H.C. Silicateins, the major biosilica forming enzymes present in demosponges: Protein analysis and phylogenetic relationship. Gene 2007, 395, 62–71. [Google Scholar] [CrossRef]
- Shimizu, K.; Cha, J.; Stucky, G.D.; Morse, D.E. Silicatein α: Cathepsin L-like protein in sponge biosilica. Proc. Natl. Acad. Sci. USA 1998, 95, 6234–6238. [Google Scholar] [CrossRef]
- Turk, V.; Stoka, V.; Vasiljeva, O.; Renko, M.; Sun, T.; Turk, B.; Turk, D. Cysteine cathepsins: From structure, function and regulation to new frontiers. Biochim. Biophys. Acta 2012, 1824, 68–88. [Google Scholar] [CrossRef]
- Pamirsky, I.E.; Golokhvast, K. Origin and Status of Homologous Proteins of Biomineralization (Biosilicification) in the Taxonomy of Phylogenetic Domains. BioMed Res. Int. 2013, 2013, 397278. [Google Scholar] [CrossRef]
- Schröer, H.C.; Krasko, A.; Pennec, G.L.; Adell, T.; Wiens, M.; Hassanein, H.; Müller, I.M.; Müller, W.E.G. Silicase, an Enzyme Which Degrades Biogenous Amorphous Silica: Contribution to the Metabolism of Silica Deposition in the Demosponge Suberites domuncula. In Silicon Biomineralization; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Petkowski, J.J.; Bains, W.; Seager, S. On the Potential of Silicon as a Building Block for Life. Life 2020, 10, 84. [Google Scholar] [CrossRef]
- Lohmann, K.J.; Putman, N.F.; Lohmann, C.M.F. Geomagnetic imprinting: A unifying hypothesis of long-distance natal homing in salmon and sea turtles. Proc. Natl. Acad. Sci. USA 2008, 105, 19096–19101. [Google Scholar] [CrossRef] [PubMed]
- Bellinger, M.R.; Wei, J.; Hartmann, U.; Cadiou, H.; Winklhofer, M.; Banks, M.A. Conservation of magnetite biomineralization genes in all domains of life and implications for magnetic sensing. Proc. Natl. Acad. Sci. USA 2022, 119, e2108655119. [Google Scholar] [CrossRef] [PubMed]
- Mouritsen, H. Long-distance navigation and magnetoreception in migratory animals. Nature 2018, 558, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Lefèvre, C.T.; Trubitsyn, D.; Abreu, F.; Kolinko, S.; Jogler, C.; de Almeida, L.G.P.; de Vasconcelos, A.T.R.; Kube, M.; Reinhardt, R.; Lins, U.; et al. Comparative genomic analysis of magnetotactic bacteria from the Deltaproteobacteria provides new insights into magnetite and greigite magnetosome genes required for magnetotaxis. Environ. Microbiol. 2013, 15, 2712–2735. [Google Scholar] [CrossRef] [PubMed]
- Ben-Shimon, S.; Stein, D.; Zarivach, R. Current view of iron biomineralization in magnetotactic bacteria. J. Struct. Biol. X 2021, 5, 100052. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.; Browne, P.J.; Hershey, D.M.; Montabana, E.; Iavarone, A.T.; Downing, K.H.; Komeili, A. A protease-mediated switch regulates the growth of magnetosome organelles in Magnetospirillum magneticum. Proc. Natl. Acad. Sci. USA 2022, 119, e2111745119. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-Y.; Kim, K.-K. Structure and function of HtrA family proteins, the key players in protein quality control. Korean Soc. Biochem. Mol. Biol. 2005, 38, 266–274. [Google Scholar] [CrossRef]
- Taoka, A.; Eguchi, Y.; Mise, S.; Oestreicher, Z.; Uno, F.; Fukumori, Y. A magnetosome-associated cytochrome MamP is critical for magnetite crystal growth during the exponential growth phase. FEMS Microbiol. Lett. 2014, 358, 21–29. [Google Scholar] [CrossRef]
- Lu, H.; Lutz, H.; Roeters, S.J.; Hood, M.A.; Schäfer, A.; Muñoz-Espí, R.; Berger, R.; Bonn, M.; Weidner, T. Calcium-Induced Molecular Rearrangement of Peptide Folds Enables Biomineralization of Vaterite Calcium Carbonate. J. Am. Chem. Soc. 2018, 140, 2793–2796. [Google Scholar] [CrossRef]
- Masica, D.L.; Schrier, S.B.; Specht, E.A.; Gray, J.J. De Novo Design of Peptide-Calcite Biomineralization Systems. J. Am. Chem. Soc. 2010, 132, 12252–12262. [Google Scholar] [CrossRef]
- Athanasiadou, D.; Carneiro, K.M.M. DNA nanostructures as templates for biomineralization. Nat. Rev. Chem. 2021, 5, 93–108. [Google Scholar] [CrossRef]
- Vrancken, J.P.; Aupič, J.; Addy, C.; Jerala, R.; Tame, J.R.; Voet, A.R. Molecular assemblies built with the artificial protein Pizza. J. Struct. Biol. X 2020, 4, 100027. [Google Scholar] [CrossRef]
- Hwang, E.T.; Tatavarty, R.; Chung, J.; Gu, M.B. New Functional Amorphous Calcium Phosphate Nanocomposites by Enzyme-Assisted Biomineralization. ACS Appl. Mater. Interfaces 2012, 5, 532–537. [Google Scholar] [CrossRef]
- Morgan, T.T.; Muddana, H.S.; Altinoǧlu, E.I.; Rouse, S.M.; Tabaković, A.; Tabouillot, T.; Russin, T.J.; Shanmugavelandy, S.S.; Butler, P.J.; Eklund, P.C.; et al. Encapsulation of Organic Molecules in Calcium Phosphate Nanocomposite Particles for Intracellular Imaging and Drug Delivery. Nano Lett. 2008, 8, 4108–4115. [Google Scholar] [CrossRef]
- Carella, F.; Degli Esposti, L.; Adamiano, A.; Iafisco, M. The Use of Calcium Phosphates in Cosmetics, State of the Art and Future Perspectives. Materials 2021, 14, 6398. [Google Scholar] [CrossRef]
- Dunleavy, R.; Lu, L.; Kiely, C.J.; McIntosh, S.; Berger, B.W. Single-enzyme biomineralization of cadmium sulfide nanocrystals with controlled optical properties. Proc. Natl. Acad. Sci. USA 2016, 113, 5275–5280. [Google Scholar] [CrossRef]
- Yang, Z.; Lu, L.; Kiely, C.; Berger, B.W.; McIntosh, S. Single Enzyme Direct Biomineralization of CdSe and CdSe-CdS Core-Shell Quantum Dots. ACS Appl. Mater. Interfaces 2017, 9, 13430–13439. [Google Scholar] [CrossRef]
- Theil, E.C.; Tosha, T.; Behera, R.K. Solving Biology’s Iron Chemistry Problem with Ferritin Protein Nanocages. Acc. Chem. Res. 2016, 49, 784–791. [Google Scholar] [CrossRef]
- Ciambellotti, S.; Pozzi, C.; Mangani, S.; Turano, P. Iron Biomineral Growth from the Initial Nucleation Seed in L-Ferritin. Chem. Eur. J. 2020, 26, 5770–5773. [Google Scholar] [CrossRef]
- Mohanty, A.; Parida, A.; Raut, R.K.; Behera, R.K. Ferritin: A Promising Nanoreactor and Nanocarrier for Bionanotechnology. ACS Bio Med Chem Au 2022, 2, 258–281. [Google Scholar] [CrossRef]
- Weichenberger, C.X.; Afonine, P.V.; Kantardjieff, K.; Rupp, B. The solvent component of macromolecular crystals. Acta Crystallogr. Sect. D Biol. Crystallogr. 2015, 71, 1023–1038. [Google Scholar] [CrossRef]
- Altan, I.; Fusco, D.; Afonine, P.V.; Charbonneau, P. Learning about Biomolecular Solvation from Water in Protein Crystals. J. Phys. Chem. B 2018, 122, 2475–2486. [Google Scholar] [CrossRef]
- Blake, C.C.F.; Koenig, D.F.; Mair, G.A.; North, A.C.T.; Phillips, D.C.; Sarma, V.R. Structure of Hen Egg-White Lysozyme: A Three-dimensional Fourier Synthesis at 2 Å Resolution. Nature 1965, 206, 757–761. [Google Scholar] [CrossRef]
- Wei, H.; House, S.; Wu, J.; Zhang, J.; Wang, Z.; He, Y.; Gao, E.J.; Gao, Y.; Robinson, H.; Li, W.; et al. Enhanced and tunable fluorescent quantum dots within a single crystal of protein. Nano Res. 2013, 6, 627–634. [Google Scholar] [CrossRef]
- Vidavsky, N.; Akiva, A.; Kaplan-Ashiri, I.; Rechav, K.; Addadi, L.; Weiner, S.; Schertel, A. Cryo-FIB-SEM serial milling and block face imaging: Large volume structural analysis of biological tissues preserved close to their native state. J. Struct. Biol. 2016, 196, 487–495. [Google Scholar] [CrossRef]
Source | PDB Code ID | Macromolecule | Crystal Material | Ligand of Interest | Function/Fold Type/Active Site Residues |
---|---|---|---|---|---|
Porcine | 1q8h [42] | Osteocalcin | Hydroxyapatite | Calcium ion | Modified Glu residue at position 17, 21, and 24. A -S-S- linkage between two protein chains is present |
Bovine | 1q3m [43] | Osteocalcin | Hydroxyapatite | -- | Dynamic binding study of calcium ions |
Bovine | 4mzz [44] | Osteocalcin (3 Glu form) | Hydroxyapatite | -- | Regulation of glucose metabolism. Helical propensity and Glu residues at positions 17, 21, and 24 are also of a focus |
Argyrosomus regius/fish | 1vzm [45] | Osteocalcin | Hydroxyapatite | Magnesium ion | Modified Glu residue at position 17, 21, 24, and 25 |
Struthio camelus | 4uww [46] | Struthiocalcin-1 | Calcite | -- | α/β fold, C-type lectin. Intramineral protein. Glu63, Glu64, Glu65, Glu66 and Asp67, Asp93, Asp94, Asp95 and Asp96 |
Gallus gallus | 1gz2 [47] | Ovocleidin-17 | Calcite | -- | α/β fold, C-type lectin. Intramineral protein. Arg103, Lys106, Arg108, Arg109 and Arg117 |
Flounder | 1wfa [48] | Antifreeze protein (AFP) | Ice | Water molecules | Inhibition growth of ice crystals. A simple alpha-helix |
Brachyosis rostratus | 2zib [49] | Antifreeze protein (AFP) | Ice | Water molecules | Inhibition growth of ice crystals. It is a C-type lectin protein |
Pteria Penguin | 5yrf [50] | PPL3-A | Calcite/Pearl | Trehalose | Carbohydrates as mediators for biomineral recognition. Few -S-S- linkages are present. Asp32 and Glu86, interact with calcium ions, and positively charged residues, Lys83, Lys107, Lys118, Arg119, and Arg147 binding to carbonates anion. Aromatic residues are present |
Sea urchin | 2jyp [35] | Aragonite protein AP7, C-terminal domain (36 residues) | Mollusk shell, nacre formation | -- | Protein-protein interaction and other functions. Contains a Zn binding −Cys−(X)4−Cys− motif. Depending on biomineral type, binding function can be variable |
Marine sponge Tethya aurantium | 6zq3 [51] | α-silicatein | Silica/sponges | -- | Silic acid condensation. Hydrolase. Functional residues S26, H165, Q20, N185. Silic acid is added to the crescent silica polymer |
Human (chimeric construct) | 2vhs [52] | cathepsin L | Silica/sponges | Sulphate | Silic acid condensation. Hydrolase. Catalytic mechanism is described [52]. |
Magnetospirillum gryphiswaldense | 3asf [53] | MamA, TPR like | Magnetite | -- | Forms a homo-oligomeric scaffold for magnetosome associated proteins guidance |
Magnetospira | 5ho1 [54] | MamB | Magnetite | Mg2+ | Transport activity for protons and iron ions |
Magnetosome protein | AF-Q2W8Q8-F1 [55] | MamE, HtrA protein | Magnetite | -- | MamE functions as protease, and together with MamD and MamO, regulates crystal formation and size |
Magnetospirillum gryphiswaldense | 3w5x [56] | MamM | Magnetite | -- | Transport activity for protons and iron ions |
Magnetospirillum magneticum | 5jyg [57] | Mamk filament, Actin-like atpase | Magnetite | ADP cofactor, Mg2+ | Mamk aligns magnetosomes. It functions as an actin homolog |
Magnetospirillum magneticum | 5hm9 [58] | MamO | Magnetite | -- | MamO supports metal transport inside the subcellular compartment. Presence of a surface di-His cluster (H148, H263). Promotes crystal nucleation. |
Magnetospirillum magnetococcus | 4jj0 [59] | MamP | Magnetite | Heme C | Iron(II) oxidation and mineralization. It performs a control ratio Fe(II)/Fe(III) |
Designed protein | 5chb [60] | nvPizza2-S16H58 | Nano crystal composed of 7 cadmium ions and 12 chloride ions | Tiny crystal composed of 7 cadmium ions and 12 chloride ions | Protein induce assembly of a small nanocrystal |
Stenotrophomonas maltophilia | 6k1n [61] | γ-lyase smCSE | CdS, ZnS, Ag2S quantum dots | PLP cofactor | Function: lyase. Tyr 110 interacts with the aromatic group of the PLP cofactor contributing to its orientation and enzyme catalysis |
Escherichia coli | 7mq6 [62] | Maltose binding protein (MBP) | Gold nanoparticle synthesis | Gold(I); Maltose | Repurposed enzyme. Peptide fused within protein sequence for binding of gold (functional residue Met 322). |
Chicken | 3p64 [63] | Lysozyme C | Gold nanoparticle | 9 gold ions Au(I), Au(III) | Hydrolase. Protein crystals form several gold ions aggregates |
Reengineered human ferritin | 3es3 [64] | Ferritin heavy chain | Gold nanoparticle | Gold(I) ions | A total of96 non-native cysteines added to the interior of the shell |
Pyrococcus furiosus | 2x17 [65] | Ferritin homolog | Silver nanoparticle | Silver(I) ions | Natural protein repurposed for silver nanoparticle growth under reduction condition |
Frog ferritin | 3ka3 [66] | Ferritin | Iron(II)/(III) biomineralization | Mg2+; Cl− | “bucket brigade” pathway for the iron(II) movement towards the catalytic di-iron center |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Costanzo, L.F. Atomic Details of Biomineralization Proteins Inspiring Protein Design and Reengineering for Functional Biominerals. Chemistry 2022, 4, 827-847. https://doi.org/10.3390/chemistry4030059
Di Costanzo LF. Atomic Details of Biomineralization Proteins Inspiring Protein Design and Reengineering for Functional Biominerals. Chemistry. 2022; 4(3):827-847. https://doi.org/10.3390/chemistry4030059
Chicago/Turabian StyleDi Costanzo, Luigi Franklin. 2022. "Atomic Details of Biomineralization Proteins Inspiring Protein Design and Reengineering for Functional Biominerals" Chemistry 4, no. 3: 827-847. https://doi.org/10.3390/chemistry4030059
APA StyleDi Costanzo, L. F. (2022). Atomic Details of Biomineralization Proteins Inspiring Protein Design and Reengineering for Functional Biominerals. Chemistry, 4(3), 827-847. https://doi.org/10.3390/chemistry4030059