Total Synthesis of Floyocidin B: 4,5-Regioselective Functionalization of 2-Chloropyridines
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Mehta, G.; Sengupta, S. Progress in the total synthesis of epoxyquinone natural products: An update. Tetrahedron 2017, 73, 6223–6247. [Google Scholar] [CrossRef]
- Li, J.Y.; Harper, J.K.; Grant, D.M.; Tombe, B.O.; Bashyal, B.; Hess, W.M.; Strobel, G.A. Ambuic acid, a highly functionalized cyclohexenone with antifungal activity from Pestalotiopsis spp. and Monochaetia sp. Phytochemistry 2001, 56, 463–468. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Johnson, R.P.; Porco, J.A. Total synthesis of the quinone epoxide dimer (+)-torreyanic acid: Application of a biomimetic oxidation/electrocyclization/Diels-Alder dimerization cascade. J. Am. Chem. Soc. 2003, 125, 5095–5106. [Google Scholar] [CrossRef] [PubMed]
- Mehta, G.; Pan, S.C. A total synthesis of the epoxyquinone based antifungal natural product (±)-ambuic acid. Tetrahedron Lett. 2005, 46, 3045–3048. [Google Scholar] [CrossRef]
- Jung, S.H.; Hwang, G.-S.; Lee, S.I.; Ryu, D.H. Total synthsis of (+)-ambuic acid: α-bromination with 1,2-dibromotetrachloroethane. J. Org. Chem. 2012, 77, 2513–2518. [Google Scholar] [CrossRef]
- Kleiner, Y.; Pöverlein, C.; Klädtke, J.; Kurz, M.; König, H.F.; Becker, J.; Mihajlovic, S.; Zubeil, F.; Marner, M.; Vilcinskas, A.; et al. The Discovery and Structure-Activity Evaluation of (+)-Floyocidin B and Synthetic Analogs. ChemMedChem 2022, 17, e202100644. [Google Scholar] [CrossRef]
- Han, L.; Huang, X.; Dahse, H.-M.; Moellmann, U.; Fu, H.; Grabley, S.; Sattler, I.; Lin, W. Unusual naphthoquinone derivatives from the twigs of Avicennia marina. J. Nat. Prod. 2007, 70, 923–927. [Google Scholar] [CrossRef]
- Kleiner, Y.; Hammann, P.; Becker, J.; Bauer, A.; Pöverlein, C.; Schuler, S.M.M. Total Synthesis and Structure Revision of (-)-Avicennone C. J. Org. Chem. 2020, 85, 13108–13120. [Google Scholar] [CrossRef]
- Kleiner, Y. Chemische und Biologische Evaluierung Neuartiger Epoxychinon-Naturstoffe und -Naturstoffhybride; Shaker Verlag: Aachen, Germany, 2021; ISBN 978-3-8440-8368-2. [Google Scholar]
- Basarab, G.; Dangel, B.; Fleming, P.R.; Gravestock, M.B.; Green, O.; Hauck, S.I.; Hill, P.; Hull, K.G.; Mullen, G.; Sherer, B.; et al. Antibacterial Piperidine Derivatives. WO2006GB00529 20060216, 16 February 2006. [Google Scholar]
- Boral, S.; Gao, X.; Wang, S.; Wurster, J.A.; Malone, T.C. Heteroaryl Dihydroindolones as Kinase Inhibitors. WO2007US64264 20070319, 19 March 2007. [Google Scholar]
- Haga, Y.; Sakamoto, T.; Shibata, T.; Nonoshita, K.; Ishikawa, M.; Suga, T.; Takahashi, H.; Takahashi, T.; Takahashi, H.; Ando, M.; et al. Discovery of trans-N-1-(2-fluorophenyl)-3-pyrazolyl-3-oxospiro6-azaisobenzofuran-1(3H),1’-cyclohexane-4’- carboxamide, a potent and orally active neuropeptide Y Y5 receptor antagonist. Bioorg. Med. Chem. 2009, 17, 6971–6982. [Google Scholar] [CrossRef]
- Basarab, G.S.; Bist, S.; Manchester, J.I.; Sherer, B. Chemical Compounds. US20070950105 20071204, 4 December 2007. [Google Scholar]
- Pooni, P.K.; Merchant, K.J.; Kerr, C.M.; Harrison, D. Benzazepine Derivatives for the Treatment of Central Nervous System Disorders. WO2011GB00016 20110107, 7 January 2011. [Google Scholar]
- Hyde, A.M.; Liu, Z.; Kosjek, B.; Tan, L.; Klapars, A.; Ashley, E.R.; Zhong, Y.-L.; Alvizo, O.; Agard, N.J.; Liu, G.; et al. Synthesis of the GPR40 Partial Agonist MK-8666 through a Kinetically Controlled Dynamic Enzymatic Ketone Reduction. Org. Lett. 2016, 18, 5888–5891. [Google Scholar] [CrossRef]
- Johnston, A.J.S.; Ling, K.B.; Sale, D.; Lebrasseur, N.; Larrosa, I. Direct ortho-Arylation of Pyridinecarboxylic Acids: Overcoming the Deactivating Effect of sp2-Nitrogen. Org. Lett. 2016, 18, 6094–6097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dragovich, P.S.; Bair, K.W.; Baumeister, T.; Ho, Y.-C.; Liederer, B.M.; Liu, X.; Liu, Y.; O’Brien, T.; Oeh, J.; Sampath, D.; et al. Identification of 2,3-dihydro-1H-pyrrolo [3,4-c]pyridine-derived ureas as potent inhibitors of human nicotinamide phosphoribosyltransferase (NAMPT). Bioorg. Med. Chem. Lett. 2013, 23, 4875–4885. [Google Scholar] [CrossRef]
- Zak, M.; Yuen, P.-W.; Liu, X.; Patel, S.; Sampath, D.; Oeh, J.; Liederer, B.M.; Wang, W.; O’Brien, T.; Xiao, Y.; et al. Minimizing CYP2C9 Inhibition of Exposed-Pyridine NAMPT (Nicotinamide Phosphoribosyltransferase) Inhibitors. J. Med. Chem. 2016, 59, 8345–8368. [Google Scholar] [CrossRef]
- Shi, L.; Chu, Y.; Knochel, P.; Mayr, H. Kinetics of bromine-magnesium exchange reactions in heteroaryl bromides. Org. Lett. 2009, 11, 3502–3505. [Google Scholar] [CrossRef]
- Trécourt, F.; Breton, G.; Bonnet, V.; Mongin, F.; Marsais, F.; Quéguiner, G. New Syntheses of Substituted Pyridines via Bromine–Magnesium Exchange. Tetrahedron 2000, 56, 1349–1360. [Google Scholar] [CrossRef]
- Abboud, M.; Mamane, V.; Aubert, E.; Lecomte, C.; Fort, Y. Synthesis of polyhalogenated 4,4’-bipyridines via a simple dimerization procedure. J. Org. Chem. 2010, 75, 3224–3231. [Google Scholar] [CrossRef] [PubMed]
- Mamane, V.; Peluso, P.; Aubert, E.; Cossu, S.; Pale, P. Chiral Hexahalogenated 4,4’-Bipyridines. J. Org. Chem. 2016, 81, 4576–4587. [Google Scholar] [CrossRef]
- Demangeat, C.; Saied, T.; Ramozzi, R.; Ingrosso, F.; Ruiz-Lopez, M.; Panossian, A.; Leroux, F.R.; Fort, Y.; Comoy, C. Transition-Metal-Free Approach for the Direct Arylation of Thiophene: Experimental and Theoretical Investigations towards the (Het)-Aryne Route. Eur. J. Org. Chem. 2019, 2019, 547–556. [Google Scholar] [CrossRef] [Green Version]
- Saied, T.; Demangeat, C.; Panossian, A.; Leroux, F.R.; Fort, Y.; Comoy, C. Transition-Metal-Free Heterobiaryl Synthesis via Aryne Coupling. Eur. J. Org. Chem. 2019, 2019, 5275–5284. [Google Scholar] [CrossRef] [Green Version]
- Honraedt, A.; Gallagher, T. Concise Entries to 4-Halo-2-pyridones and 3-Bromo-4-halo-2-pyridones. Synlett 2015, 27, 67–69. [Google Scholar] [CrossRef]
- Krasovskiy, A.; Knochel, P. A LiCl-mediated Br/Mg exchange reaction for the preparation of functionalized aryl- and heteroarylmagnesium compounds from organic bromides. Angew. Chem. Int. Ed. 2004, 43, 3333–3336. [Google Scholar] [CrossRef]
- Desaintjean, A.; Haupt, T.; Bole, L.J.; Judge, N.R.; Hevia, E.; Knochel, P. After our method studies had been completed, Knochel et al. published mixed Li/Mg organometallic species for the bromine-magnesium exchange on dibromopyridines, which led under certain conditions to different regioselectivities compared to i-PrMgCl*LiCl. Angew. Chem. Int. Ed. 2021, 60, 1513–1518. [Google Scholar] [CrossRef]
- Muratake, H.; Nakai, H. Intramolecular cyclization using palladium-catalyzed arylation toward formyl and nitro groups. Tetrahedron Lett. 1999, 40, 2355–2358. [Google Scholar] [CrossRef]
- Muratake, H.; Natsume, M.; Nakai, H. Palladium-catalyzed intramolecular α-arylation of aliphatic ketone, formyl, and nitro groups. Tetrahedron 2004, 60, 11783–11803. [Google Scholar] [CrossRef]
- Davies, J.; Angelini, L.; Alkhalifah, M.A.; Sanz, L.M.; Sheikh, N.S.; Leonori, D. Photoredox Synthesis of Arylhydroxylamines from Carboxylic Acids and Nitrosoarenes. Synthesis 2018, 50, 821–830. [Google Scholar]
- Sundalam, S.K.; Nilova, A.; Seidl, T.L.; Stuart, D.R. A Selective C− H deprotonation strategy to access functionalized arynes by using hypervalent iodine. Angew. Chem. Int. Ed. 2016, 55, 8431–8434. [Google Scholar] [CrossRef] [PubMed]
- Wittig, G.; Schmidt, H.-J.; Renner, H. Über Lithium-diäthylamid als Hydrid-Donator. Chem. Ber. 1962, 95, 2377–2383. [Google Scholar] [CrossRef]
- Kowalski, C.; Creary, X.; Rollin, A.J.; Burke, M.C. Reductions of .alpha.-substituted ketones by lithium diisopropylamide. J. Org. Chem. 1978, 43, 2601–2608. [Google Scholar] [CrossRef]
- Majewski, M.; Gleave, D.M. Reduction with lithium dialkylamides. J. Organomet. Chem. 1994, 470, 1–16. [Google Scholar] [CrossRef]
- Caserio, F.F., Jr.; Roberts, J.D. Small-ring Compounds. XXI. 3-Methylenecyclobutanone and Related Compounds1. J. Am. Chem. Soc. 1958, 80, 5837–5840. [Google Scholar] [CrossRef]
- LaMattina, J.L. The Synthesis of 2-Amino-4-(4-imidazolyl) pyridines. J. Heterocyclic Chem. 1983, 20, 533–538. [Google Scholar] [CrossRef]
- Henegar, K.E.; Ashford, S.W.; Baughman, T.A.; Sih, J.C.; Gu, R.-L. Practical Asymmetric Synthesis of (S)-4-Ethyl-7, 8-dihydro-4-hydroxy-1 H-pyrano [3, 4-f] indolizine-3, 6, 10 (4 H)-trione, a Key Intermediate for the Synthesis of Irinotecan and Other Camptothecin Analogs. J. Org. Chem. 1997, 62, 6588–6597. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kleiner, Y.; Bauer, A.; Hammann, P.; Schuler, S.M.M.; Pöverlein, C. Total Synthesis of Floyocidin B: 4,5-Regioselective Functionalization of 2-Chloropyridines. Chemistry 2023, 5, 168-178. https://doi.org/10.3390/chemistry5010014
Kleiner Y, Bauer A, Hammann P, Schuler SMM, Pöverlein C. Total Synthesis of Floyocidin B: 4,5-Regioselective Functionalization of 2-Chloropyridines. Chemistry. 2023; 5(1):168-178. https://doi.org/10.3390/chemistry5010014
Chicago/Turabian StyleKleiner, Yolanda, Armin Bauer, Peter Hammann, Sören M. M. Schuler, and Christoph Pöverlein. 2023. "Total Synthesis of Floyocidin B: 4,5-Regioselective Functionalization of 2-Chloropyridines" Chemistry 5, no. 1: 168-178. https://doi.org/10.3390/chemistry5010014
APA StyleKleiner, Y., Bauer, A., Hammann, P., Schuler, S. M. M., & Pöverlein, C. (2023). Total Synthesis of Floyocidin B: 4,5-Regioselective Functionalization of 2-Chloropyridines. Chemistry, 5(1), 168-178. https://doi.org/10.3390/chemistry5010014