Synthesis of the Bipyridine-Type Ligand 3-(2-Pyridyl)-5,6-diphenyl-1,2,4-triazine and Structural Elucidation of Its Cu(I) and Ag(I) Complexes
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Methods of Study
2.2. Synthesis of the Diimine Ligand
2.3. Synthesis of the Complexes
2.4. Crystallography
3. Results and Discussion
3.1. Crystal Structure of [{Cu(L)}2(μ-dppm)2](BF4)2
3.2. Crystal Structure of [{Ag(L)}2(μ-dppm)2] (NO3)2 1.5(H2O)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- van Koten, G.; Vrieze, K. 1,4-Diaza-1,3-butadiene (α-diimine) ligands: Their coordination modes and the reactivity of their metal complexes. Adv. Organomet. Chem. 1982, 21, 151–239. [Google Scholar]
- Morones-Ramirez, J.R.; Winkler, J.A.; Spina, C.S.; Collins, J.J. Silver enhances antibiotic activity against gram-negative bacteria. Sci. Transl. Med. 2013, 5, 190ra81. [Google Scholar] [CrossRef] [PubMed]
- Kyzioł, A.; Cierniak, A.; Gubernator, J.; Markowski, A.; Jezowska-Bojczuk, M.; Komarnicka, U.K. Copper(I) complexes with phosphine derived from sparfloxacin. Part III: Multifaceted cell death and preliminary study of liposomal formulation of selected copper(I) complexes. JCS Dalton Trans. 2018, 47, 1981–1992. [Google Scholar] [CrossRef]
- Gandin, V.; Porchia, M.; Tisato, F.; Zanella, A.; Severin, E.; Dolmella, A.; Marzano, C. Novel mixed-ligand copper(I) complexes: Role of diimine ligands on cytotoxicity and genotoxicity. J. Med. Chem. 2013, 56, 7416–7430. [Google Scholar] [CrossRef] [PubMed]
- Barnard, P.J.; Berners-Price, S.J. Targeting the mitochondrial cell death pathway with gold compounds. Coord. Chem. Rev. 2007, 251, 1889–1902. [Google Scholar] [CrossRef]
- Lennox, A.J.J.; Fischer, S.; Jurrat, M.; Luo, S.P.; Rockstroh, N.; Junge, H.; Ludwig, R.; Beller, M. Copper-Based Photosensitisers in Water Reduction: A More Efficient In Situ Formed System and Improved Mechanistic Understanding. Chem. Eur. J. 2016, 22, 1233–1238. [Google Scholar] [CrossRef]
- Reiser, O. Shining Light on Copper: Unique Opportunities for Visible-Light-Catalyzed Atom Transfer Radical Addition Reactions and Related Processes. Acc. Chem. Res. 2016, 49, 1990–1996. [Google Scholar] [CrossRef]
- Dragonetti, C.; Magni, M.; Colombo, A.; Fagnani, F.; Roberto, D.; Melchiorre, F.; Biagini, P.; Fantacci, S. Towards efficient sustainable full-copper dye-sensitized solar cells. JCS Dalton Trans. 2019, 48, 9703–9711. [Google Scholar] [CrossRef]
- Appleby, M.V.; Walker, P.G.; Pritchard, D.; van Meurs, S.; Booth, C.M.; Robertson, C.; Ward, M.D.; Kelly, D.J.; Weinstein, J.A. Cu(I) diimine complexes as immobilised antibacterial photosensitisers operating in water under visible light. Mater. Adv. 2020, 1, 3417–3427. [Google Scholar] [CrossRef]
- McMillin, D.R.; Kirchhoff, J.R.; Goodwin, K.V. Exciplex quenching of photo-excitd copper complexes. Coord. Chem. Rev. 1985, 64, 83–92. [Google Scholar] [CrossRef]
- Miller, M.T.; Gantzel, P.K.; Karpishin, T.B. Structures of the Copper(I) and Copper(II) Complexes of 2,9-Diphenyl-1,10-phenanthroline: Implications for Excited-State Structural Distortion. Inorg. Chem. 1999, 38, 2285–2290. [Google Scholar] [CrossRef]
- Smith, C.S.; Branham, C.W.; Marquardt, B.J.; Mann, K.R. Oxygen gas sensing by luminescence quenching in crystals of Cu(xantphos)(phen)+ complexes. J. Am. Chem. Soc. 2010, 132, 14079–14085. [Google Scholar] [CrossRef]
- Keller, S.; Brunner, F.; Junquera-Hernández, J.M.; Pertegás, A.; La-Placa, M.-G.; Prescimone, A.; Bolink, H.J.; Orti, E.; Constable, E.C.; Housecroft, C.E. CF3 Substitution of [Cu(P^P)(bpy)][PF6] Complexes: Effects on Photophysical Properties and Light-Emitting Electrochemical Cell Performance. ChemPlusChem 2018, 83, 217–229. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Schulz, M.; Wächtler, M.; Karnahl, M.; Dietzek, B. Heterolepticdiimine–diphosphine Cu(I) complexes as an alternative towards noble-metal based photosensitizers: Design strategies, photophysical properties and perspective applications. Coord. Chem. Rev. 2018, 356, 127–146. [Google Scholar]
- Wallesch, M.; Volz, D.; Zink, D.M.; Schepers, U.; Nieger, M.; Baumann, T.; Bräse, S. Bright Coppertunities: Multinuclear CuI Complexes with N–P Ligands and Their Applications. Chem. Eur. J. 2014, 20, 6578–6590. [Google Scholar] [CrossRef]
- Keller, S.; Prescimone, A.; Constable, E.C.; Housecroft, C.E. Copper(I) and silver(I) complexes of 9,9-dimethyl-4,5-bis(di-tert-butylphosphino)xanthene: Photophysical properties and structural rigidity under pressure. Photochem. Photobiol. Sci. 2018, 17, 375–385. [Google Scholar] [CrossRef]
- Hsu, C.W.; Lin, C.C.; Chung, M.W.; Chi, Y.; Lee, G.H.; Chou, P.T.; Chang, C.H.; Chen, P.Y. Systematic Investigation of the Metal-Structure–Photophysics Relationship of Emissive d10-Complexes of Group 11 Elements: The Prospect of Application in Organic Light Emitting Devices. J. Am. Chem. Soc. 2011, 133, 12085–12099. [Google Scholar] [CrossRef] [PubMed]
- Rosa, V.; Santos, C.I.M.; Welter, R.; Aullón, G.; Lodeiro, C.; Avilés, T. Comparison of the Structure and Stability of New α-Diimine Complexes of Copper(I) and Silver(I): Density Functional Theory versus Experimental. Inorg. Chem. 2010, 49, 8699–8708. [Google Scholar] [CrossRef] [PubMed]
- Brunner, F.; Babaei, A.; Pertegás, A.; Junquera-Hernández, J.M.; Prescimone, A.; Constable, E.C.; Bolink, H.J.; Sessolo, M.; Ortí, E.; Housecroft, C.E. Phosphane tuning in heteroleptic [Cu(N^N)(P^P)]+ complexes for light-emitting electrochemical cells. JCS Dalton Trans. 2019, 48, 446–460. [Google Scholar] [CrossRef]
- Figeys, H.P.; Mathy, A. Diels-alder reactions with inverse electron demand. II. The reaction of benzamidine with π-deficient heteroaromatic compounds. Tetrahedron Lett. 1981, 22, 1393–1396. [Google Scholar] [CrossRef]
- Zhao, Z.; Leister, W.H.; Strauss, K.A.; Wisnoski, D.D.; Lindsley, G.W. Broadening the scope of 1,2,4-triazine synthesis by the application of microwave technology. Tetrahedron Lett. 2003, 44, 1123–1127. [Google Scholar] [CrossRef]
- Bruker Analytical X-ray Systems, Inc. Apex2, Version 2 User Manual, M86-E01078; Bruker Analytical X-ray Systems, Inc.: Madison, WI, USA, 2006. [Google Scholar]
- Siemens Industrial Automation, Inc. SADABS: Area-Detector Absorption Correction; Siemens Industrial Automation, Inc.: Madison, WI, USA, 1996. [Google Scholar]
- Betteridge, P.W.; Carruthers, J.R.; Cooper, R.I.; Prout, K.; Watkin, D.J. Software for Guided Crystal Structure Analysis. J. Appl. Cryst. 2003, 36, 1487. [Google Scholar] [CrossRef]
- Palatinus, L.; Chapuis, G. SUPERFLIP—A Computer Program for the Solution of Crystal Structures by Charge Flipping in Arbitrary Dimensions. J. Appl. Cryst. 2007, 40, 786–790. [Google Scholar] [CrossRef]
- Watkin, D.J.; Prout, C.K.; Pearce, L.J. Chemical Crystallography Laboratory; University of Oxford: Oxford, UK, 1996. [Google Scholar]
- DIAMOND—Crystal and Molecular Structure Visualization, Version 3.1c; Crystal Impact: Bonn, Germany, 2006.
- Uma, R.; Palaniandavar, M.; Butcher, R.J. Synthesis, structure, spectra and redox interconversions in copper(II) complexes of 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine. J. Chem. Soc. Dalton Trans. 1996, 10, 2061–2066. [Google Scholar] [CrossRef]
- Eltayeb, N.E.; Teoh, S.G.; Ng, S.-L.; Funb, H.-K.; Ibrahim, K. 5,6-Diphenyl-3-(2-pyridyl)-1,2,4-triazine. Acta Cryst. 2007, E63, o1041–o1042. [Google Scholar] [CrossRef]
- James, J.P. Stewart; Stewart Computational Chemistry: Colorado Springs, CO, USA, 2016; Available online: http://OpenMOPAC.net (accessed on 20 November 2022).
- Keyes, T.E.; WeIdon, F.; Muller, E.; Pechy, P.; Gratzel, M.; Vos, J.G. Application of Deuteriation to Determine the Location of the Emitting State in Mixed-ligand RuII Polypyridyl Complexes. J. Chem. Soc. Dalton Trans. 1995, 16, 2705–2706. [Google Scholar] [CrossRef]
- Hobbollahi, E.; Himmelsbach, M.; List, M.; Monkowius, U. Synthesis and characterization of dinuclear silver(I) complexes with exchangeable nitrile ligands. Inorg. Chem. Commun. 2016, 71, 105. [Google Scholar] [CrossRef]
- Hoffmann, M.; Dagorne, S.; Pale, P.; Blanc, A.; de Frémont, P. Dinuclear Silver(I) and Gold(I) Complexes with Chiral Oxazoline-NHC Ligands. J. Organomet. Chem. 2022, 979, 122507. [Google Scholar] [CrossRef]
Crystal Data | ||
Chemical formula Moiety formula | C90H72B2Cu2F8N8P4 C90H72Cu2N8P4, 2(BF4) | C90H75Ag2N10O7.50P4 C90H72Ag2N8P4, 2(NO3), 1.5(H2O) |
Mr | 1690.21 | 1756.28 |
Crystal system, Space group | Monoclinic P21/n | Triclinic Pī |
Temperature (K) | 295 | 295 |
a (Å) b (Å) c (Å) α (°) | 11.4136 (12) 25.281 (3) 14.3061 (17) 90 | 15.771 (2) 17.242 (2) 19.635 (3) 64.301 (4) |
β (°) γ (°) | 104.919 (4) 90 | 68.549 (4) 62.873 (4) |
V (Å3) | 3988.8 (8) | 4186.8 (10) |
Z | 2 | 2 |
Radiation type | Mo Kα | Mo Kα |
µ (mm−1) | 0.69 | 0.61 |
Crystal size (mm) | 0.14 × 0.13 × 0.11 | 0.20 × 0.19 × 0.12 |
Tmin, Tmax | 0.91, 0.93 | 0.89, 0.93 |
No. of reflections | ||
Measured Independent Observed [I > 2.0σ(I)] | 35,566 7633 5673 | 70,037 16,094 11,509 |
Rint | 0.055 | 0.029 |
(sin θ/λ)max (Å−1) | 0.612 | 0.615 |
Refinement | ||
R[F2 > 2σ(F2)], wR(F2), S | 0.045 0.096 1.00 | 0.046 0.108 1.00 |
No. of reflections | 5673 | 11,509 |
No. of parameters | 514 | 1018 |
No. of restraints | - | 8 |
Δρmax, Δρmin (e Å−3) | 0.57–0.39 | 1.27–0.74 |
Cu1—P2i | 2.2610 (8) | P2i—Cu1—P1 | 130.85 (3) |
Cu1—P1 | 2.2259 (8) | P2i—Cu1—N1 | 106.49 (7) |
Cu1—N1 | 2.122 (3) | P1—Cu1—N1 | 107.45 (7) |
Cu1—N2 | 2.113 (2) | P2i—Cu1—N2 | 93.42 (7) |
Ag1—P1 | 2.4526 (10) | P1—Ag1—P3 | 159.91 (4) |
Ag1—P3 | 2.4168 (10) | P1—Ag1—N1 | 98.05 (8) |
Ag1—N1 | 2.463 (4) | P3—Ag1—N1 | 100.75 (8) |
Ag1—N2 | 2.565 (3) | P1—Ag1—N2 | 94.86 (8) |
Ag2—P2 | 2.4197 (10) | P3—Ag1—N2 | 99.43 (8) |
Ag2—P4 | 2.4544 (10) | N1—Ag1—N2 | 64.99 (11) |
Ag2—N5 | 2.491 (4) | P2—Ag2—P4 | 159.83 (4) |
Ag2—N6 | 2.598 (3) | P2—Ag2—N5 | 101.69 (9) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hatzidimitriou, A.; Stamatiou, A.; Tzimopoulos, D.; Akrivos, P.D. Synthesis of the Bipyridine-Type Ligand 3-(2-Pyridyl)-5,6-diphenyl-1,2,4-triazine and Structural Elucidation of Its Cu(I) and Ag(I) Complexes. Chemistry 2023, 5, 1508-1517. https://doi.org/10.3390/chemistry5030103
Hatzidimitriou A, Stamatiou A, Tzimopoulos D, Akrivos PD. Synthesis of the Bipyridine-Type Ligand 3-(2-Pyridyl)-5,6-diphenyl-1,2,4-triazine and Structural Elucidation of Its Cu(I) and Ag(I) Complexes. Chemistry. 2023; 5(3):1508-1517. https://doi.org/10.3390/chemistry5030103
Chicago/Turabian StyleHatzidimitriou, Antonios, Antonios Stamatiou, Dimitrios Tzimopoulos, and Pericles D. Akrivos. 2023. "Synthesis of the Bipyridine-Type Ligand 3-(2-Pyridyl)-5,6-diphenyl-1,2,4-triazine and Structural Elucidation of Its Cu(I) and Ag(I) Complexes" Chemistry 5, no. 3: 1508-1517. https://doi.org/10.3390/chemistry5030103
APA StyleHatzidimitriou, A., Stamatiou, A., Tzimopoulos, D., & Akrivos, P. D. (2023). Synthesis of the Bipyridine-Type Ligand 3-(2-Pyridyl)-5,6-diphenyl-1,2,4-triazine and Structural Elucidation of Its Cu(I) and Ag(I) Complexes. Chemistry, 5(3), 1508-1517. https://doi.org/10.3390/chemistry5030103