Thermodynamic Exercises for the Kinetically Controlled Hydrogenation of Carvone
Abstract
:1. Introduction
2. Thermodynamic Workflow
- -
- Step I: the high-level QC calculations are first performed in order to obtain (g) and (g) values.
- -
- Step II: vapour pressure–temperature dependencies for the molecules involved in the reaction network are measured or taken from the literature. All possible experimental and empirical data and methods are used to evaluate and validate the and values.
- -
- Step III: the (liq) and (liq) values in the liquid phase are derived from the results of the first and second steps. The enthalpies of formation of the liquid phase are validated (e.g., with the help of combustion experiments in this work). The (liq) and (liq) values are derived according to Hess’s Law and inserted into Equation (1) to derive the (liq) of a desired reaction, and an analysis of all three quantities is performed.
3. Theoretical and Experimental Methods
4. Results and Discussion
4.1. Step I: Theoretical Gas-Phase Enthalpies of Formation from Quantum Chemistry
CAS | Compound | (g, AT) a | (g, G4)corr b | c | (liq)theor d |
---|---|---|---|---|---|
6485-40-1 | (-)-carvone | −122.1 | −124.2 | 61.7 | −185.9 |
99-48-9 | trans-carveol | −168.7 | −169.9 | 72.6 | −242.5 |
5524-05-0 | trans-(±)-dihydrocarvone | −221.1 | −221.4 | 57.2 | −278.6 |
3792-53-8 | cis-(±)-dihydrocarvone | −220.0 | −220.3 | 56.8 | −277.1 |
499-71-8 | carvotanacetone | −238.4 | −238.4 | 59.3 | −297.7 |
499-70-7 | (±)-carvomenthone | −337.1 | −335.3 | 58 | −393.3 |
cis-(±)-tetrahydrocarvone | −335.1 | −333.3 | 58.4 | −391.7 | |
499-75-2 | carvacrol | −210.8 | −211.3 | 72.5 | −283.8 |
499-69-4 | carvomenthol | −397.0 | −394.1 | 69.9 | −464.0 |
619-01-2 | trans-dihydrocarveol | −281.8 | −281.0 | 71.9 | −352.9 |
22567-21-1 | cis-dihydrocarveol | −274.0 | −273.3 | 70.1 | −343.4 |
536-30-1 | carvotanacetol | −280.5 | −279.7 | 73.1 | −352.8 |
Compounds, CAS | T-Range/ K | / Tav | / a 298 K |
---|---|---|---|
(˗)-carvone, 6485-40-1 | 279.6–333.0 | 61.4 ± 0.2 | 61.7 ± 0.3 b |
320–504 | 52.2 ± 0.5 | 60.2 ± 1.7 | |
cis-(±)-dihydrocarvone, 3792-53-8 | 322–495 | 49.7 ± 0.8 | 56.8 ± 1.6 |
trans-(±)-dihydrocarvone, 5524-05-0 | 343–495 | 49.4 ± 0.6 | 57.2 ± 1.7 |
cis-(±)-tetrahydrocarvone | 335–496 | 50.6 ± 0.5 | 58.4 ± 1.6 |
trans-(±)-tetrahydrocarvone (carvomenthone), 499-70-7 | 335–494 | 50.0 ± 0.5 | 58.0 ± 1.7 |
carvotanacetone, 499-71-8 | 317–501 | 52.4 ± 0.7 | 59.3 ± 1.5 |
carvomenthol, 499-69-4 | 354–491 | 53.7 ± 0.5 | 69.9 ± 3.3 |
(±)-cis-carveol, 1197-06-4 | 338–504 | 57.0 ± 1.2 | 71.0 ± 3.0 |
(±)-trans-carveol, 99-48-9 | 314–501 | 58.5 ± 0.8 | 72.6 ± 2.9 |
trans-dihydrocarveol, 619-01-2 | 350–498 | 55.0 ± 0.6 | 71.9 ± 3.4 |
cis-dihydrocarveol, 22567-21-1 | 353–498 | 55.4 ± 1.3 | 70.1 ± 3.6 |
carvotanacetol, 536-30-1 | 337–495 | 59.6 ± 1.3 | 73.1 ± 3.0 |
carvacrol, 499-75-2 | 72.5 ± 0.1 c | ||
2-methyl-2-cyclohexen-1-one, 1121-18-2 | 325–452 | 44.3 ± 0.3 | 48.2 ± 0.8 d |
2-methylcyclohex-2-en-1-ol, 20461-30-7 | 298–441 | 54.0 ± 1.0 | 60.2 ± 1.3 d |
4.2. Step II: Vaporisation Thermodynamics
4.2.1. Absolute Vapour Pressures
4.2.2. Vaporisation Enthalpies
4.2.3. Validation of Enthalpies of Vaporisation Using the “Centrepiece” Approach
4.2.4. Entropies of Vaporisation
4.3. Step III: Thermodynamic Analysis of the Reaction Network for the Hydrogenation of Carvone
4.3.1. Liquid-Phase Enthalpies of Formation and Liquid-Phase Reaction Enthalpies
4.3.2. Liquid-Phase Reaction Entropies
4.3.3. Gibbs Energies and Thermodynamic Analysis of the Hydrogenation of Carvone
4.3.4. Hydrogenation of Carvone: Catalytic Aspects
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jiang, Y.; Wang, X.; Cao, Q.; Dong, L.; Guan, J.; Mu, X. Sustainable Production of Bulk Chemicals; Xian, M., Ed.; Springer: Dordrecht, The Netherlands, 2016; pp. 19–49. [Google Scholar]
- Bicas, J.L.; Dionísio, A.P.; Pastore, G.M. Bio-Oxidation of Terpenes: An Approach for the Flavor Industry. Chem. Rev. 2009, 109, 4518–4531. [Google Scholar] [CrossRef]
- Ascue Avalos, G.A.; Toogood, H.S.; Tait, S.; Messiha, H.L.; Scrutton, N.S. From Bugs to Bioplastics: Total (+)-Dihydrocarvide Biosynthesis by Engineered Escherichia coli. ChemBioChem 2019, 20, 785–792. [Google Scholar] [CrossRef]
- Demidova, Y.S.; Suslov, E.V.; Simakova, O.A.; Simakova, I.L.; Volcho, K.P.; Salakhutdinov, N.F.; Murzin, D.Y. Selective Carvone Hydrogenation to Dihydrocarvone over Titania Supported Gold Catalyst. Catal. Today 2015, 241, 189–194. [Google Scholar] [CrossRef]
- Benavente, P.; Cárdenas-Lizana, F.; Keane, M.A. Selective Production of Carvacrol from Carvone over Supported Pd Catalysts. Catal. Commun. 2017, 96, 37–40. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Curtiss, L.A.; Redfern, P.C.; Raghavachari, K. Gaussian-4 Theory. J. Chem. Phys. 2007, 126, 084108. [Google Scholar] [CrossRef] [PubMed]
- Pracht, P.; Bohle, F.; Grimme, S. Automated Exploration of the Low-Energy Chemical Space with Fast Quantum Chemical Methods. Phys. Chem. Chem. Phys. 2020, 22, 7169–7192. [Google Scholar] [CrossRef]
- Petersson, G.A.; Bennett, A.; Tensfeldt, T.G.; Al-Laham, M.A.; Shirley, W.A.; Mantzaris, J. A Complete Basis Set Model Chemistry. I. The Total Energies of Closed-shell Atoms and Hydrides of the First-row Elements. J. Chem. Phys. 1988, 89, 2193–2218. [Google Scholar] [CrossRef]
- Pedley, J.B.; Naylor, R.D.; Kirby, S.P. Thermochemical Data of Organic Compounds; Chapman and Hall: New York, NY, USA, 1986; pp. 1–792. [Google Scholar]
- Verevkin, S.P. Weaving a Web of Reliable Thermochemistry around Lignin Building Blocks: Phenol, Benzaldehyde, and Anisole. J. Therm. Anal. Calorim. 2022, 147, 6073–6085. [Google Scholar] [CrossRef]
- Verevkin, S.P. Thermochemistry of Phenols: Buttress Effects in Sterically Hindered Phenols. J. Chem. Thermodyn. 1999, 31, 1397–1416. [Google Scholar] [CrossRef]
- Štejfa, V.; Fulem, M.; Růžička, K. Thermodynamic Study of Selected Aromatic Monoterpenoids. J. Mol. Liq. 2023, 380, 121724. [Google Scholar] [CrossRef]
- Samarov, A.A.; Verevkin, S.P. Comprehensive Thermodynamic Study of Alkyl-Biphenyls as a Promising Liquid Organic Hydrogen Carriers. J. Chem. Thermodyn. 2022, 174, 106872. [Google Scholar] [CrossRef]
- Verevkin, S.P.; Andreeva, I.V.; Zherikova, K.V.; Pimerzin, A.A. Prediction of Thermodynamic Properties: Centerpiece Approach—How Do We Avoid Confusion and Get Reliable Results? J. Therm. Anal. Calorim. 2022, 147, 8525–8534. [Google Scholar] [CrossRef]
- Gallis, H.E.; van Miltenburg, J.C.; Oonk, H.A.J.; van der Eerden, J.P. Mixtures of D- and l-Carvone. III. Thermodynamic Properties of l-Carvone. Thermochim. Acta 1996, 286, 307–319. [Google Scholar] [CrossRef]
- Barbaro, P.; Liguori, F. Heterogenized Homogeneous Catalysts for Fine Chemicals Production: Materials and Processes; Springer: Dordrecht, The Netherlands, 2010. [Google Scholar]
- SciFinder. Chemical Abstracts Service. Available online: http://scifinder.cas.org/ (accessed on 25 June 2024).
- Reaxys. Available online: https://www.reaxys.com/ (accessed on 25 June 2024).
- Guidechem. Chemical Network. Available online: https://www.guidechem.com (accessed on 25 June 2024).
- Kulikov, D.; Verevkin, S.P.; Heintz, A. Determination of Vapor Pressures and Vaporization Enthalpies of the Aliphatic Branched C 5 and C 6 Alcohols. J. Chem. Eng. Data 2001, 46, 1593–1600. [Google Scholar] [CrossRef]
- Verevkin, S.P.; Emel’yanenko, V.N. Transpiration Method: Vapor Pressures and Enthalpies of Vaporization of Some Low-Boiling Esters. Fluid Phase Equilib. 2008, 266, 64–75. [Google Scholar] [CrossRef]
- Verevkin, S.P.; Sazonova, A.Y.; Emel’yanenko, V.N.; Zaitsau, D.H.; Varfolomeev, M.A.; Solomonov, B.N.; Zherikova, K.V. Thermochemistry of Halogen-Substituted Methylbenzenes. J. Chem. Eng. Data 2015, 60, 89–103. [Google Scholar] [CrossRef]
- Emel’yanenko, V.N.; Verevkin, S.P. Benchmark Thermodynamic Properties of 1,3-Propanediol: Comprehensive Experimental and Theoretical Study. J. Chem. Thermodyn. 2015, 85, 111–119. [Google Scholar] [CrossRef]
- Acree, W.; Chickos, J.S. Phase Transition Enthalpy Measurements of Organic and Organometallic Compounds and Ionic Liquids. Sublimation, Vaporization, and Fusion Enthalpies from 1880 to 2015. Part 2. C11-C192. J. Phys. Chem. Ref. Data 2017, 46, 013104. [Google Scholar] [CrossRef]
- Chickos, J.S.; Hosseini, S.; Hesse, D.G.; Liebman, J.F. Heat Capacity Corrections to a Standard State: A Comparison of New and Some Literature Methods for Organic Liquids and Solids. Struct. Chem. 1993, 4, 271–278. [Google Scholar] [CrossRef]
- Clarke, E.C.W.; Glew, D.N. Evaluation of Thermodynamic Functions from Equilibrium Constants. Trans. Faraday Soc. 1966, 62, 539. [Google Scholar] [CrossRef]
- Ambrose, D.; Ghiassee, N. Vapour Pressures and Critical Temperatures and Critical Pressures of C5 and C6 Cyclic Alcohols and Ketones. J. Chem. Thermodyn. 1987, 19, 903–909. [Google Scholar] [CrossRef]
- Aucejo, A.; Monton, J.B.; Munoz, R.; Sanchotello, M. Isobaric Vapor-Liquid Equilibrium Data for the Cyclohexanone + N-Methylacetamide System. J. Chem. Eng. Data 1993, 38, 160–162. [Google Scholar] [CrossRef]
- Palczewska-Tulińska, M.; Oracz, P. Vapor Pressures of Hexanal, 2-Methylcyclohexanone, and 2-Cyclohexen-1-One. J. Chem. Eng. Data 2006, 51, 639–641. [Google Scholar] [CrossRef]
- Cruz Burguet, M.; Monton, J.B.; Sanchotello, M.; Vazquez, M.I. Vapor-Liquid Equilibria of Cyclohexanone + Cyclohexanol and Cyclohexanone + 2-Methylcyclohexanone Systems at 4.00 and 26.66 KPa. J. Chem. Eng. Data 1993, 38, 328–331. [Google Scholar] [CrossRef]
- Aucejo, A.; Cruz Burguet, M.; Munoz, R.; Vazquez, M.I. Isobaric Vapor-Liquid Equilibria for Cyclohexanone + 3-Methylcyclohexanone or 4-Methylcyclohexanone Systems at 4.00 and 26.66 KPa. J. Chem. Eng. Data 1993, 38, 379–382. [Google Scholar] [CrossRef]
- Herz, W.; Bloch, W. Physikalisch-Chemische Untersuchungen an Verbindungen Der Cyklohexanreihe. Z. Phys. Chem. 1924, 110, 23–39. [Google Scholar] [CrossRef]
- Vilas-Boas, S.M.; Pokorný, V.; Štejfa, V.; Ferreira, O.; Pinho, S.P.; Růžička, K.; Fulem, M. Vapor Pressure and Thermophysical Properties of Eugenol and (+)-Carvone. Fluid Phase Equilib. 2019, 499, 112248. [Google Scholar] [CrossRef]
- Majer, V.; Svoboda, V. Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation; Blackwell Scientific Publications: Oxford, UK, 1985. [Google Scholar]
- Goodwin, S.R.; Newsham, D.M.T. Vapor-Liquid Equilibriums in Mixtures of o-Methylcyclohexanol and o-Methylcyclohexyl Acetate from 50-296 Mm Hg. J. Chem. Eng. Data 1975, 20, 178–179. [Google Scholar] [CrossRef]
- Stephenson, R.M.; Malanowski, S. Handbook of the Thermodynamics of Organic Compounds; Springer: Dordrecht, The Netherlands, 1987; ISBN 978-94-010-7923-5. [Google Scholar]
- Verevkin, S.P.; Schick, C. Substituent Effects on the Benzene Ring. Determination of the Intramolecular Interactions of Substituents in Tert-Alkyl-Substituted Catechols from Thermochemical Measurements. J. Chem. Eng. Data 2000, 45, 946–952. [Google Scholar] [CrossRef]
- Emel’yanenko, V.N.; Verevkin, S.P.; Heintz, A. The Gaseous Enthalpy of Formation of the Ionic Liquid 1-Butyl-3-Methylimidazolium Dicyanamide from Combustion Calorimetry, Vapor Pressure Measurements, and Ab Initio Calculations. J. Am. Chem. Soc. 2007, 129, 3930–3937. [Google Scholar] [CrossRef]
- Hubbard, W.N.; Scott, D.W.; Waddington, G. Standard States and Corrections for Combustions in a Bomb at Constant Volume. In Experimental Thermochemistry; Rossini, F.D., Ed.; Interscience Publishers: New York, NY, USA, 1956; pp. 75–128. [Google Scholar]
- Verevkin, S.P. Thermochemistry of Phenols: Quantification of the Ortho-, Para-, and Meta-Interactions in Tert-Alkyl Substituted Phenols. J. Chem. Thermodyn. 1999, 31, 559–585. [Google Scholar] [CrossRef]
- Bardyshev, I.I.; Kozlov, N.G.; Vyalimyaé, T.K.; Pekhk, T.I. Synthesis and Study of the Structure of New N-Substituted 2-Methyl-5-(1-Methylethyl) Cyclohexylamines. Chem. Nat. Compd. 1980, 16, 397–402. [Google Scholar] [CrossRef]
- Cox, J.D.; Wagman, D.D.; Medvedev, V.A. CODATA Key Values for Thermodynamics: Final Report of the CODATA Task Group on Key Values for Thermodynamics; CODATA Series on Thermodynamic; Hemisphere Publishing Corporation: New York, NY, USA, 1989. [Google Scholar]
- Olofsson, G. Assignment of Uncertainties. In Combustion Calorimetry: Experimental Chemical Thermodynamics; Sunner, S., Månsson, M., Eds.; Pergamon: New York, NY, USA, 1979; pp. 137–161. [Google Scholar]
Compound | AT a | Exp b | ATcorr c | Δ d |
---|---|---|---|---|
cyclohexanol | −289.8 | −290.0 ± 2.1 [10] | −288.8 | −1.2 |
butanol | −274.4 | −275.0 ± 0.4 [10] | −273.9 | −1.1 |
pentanol | −295.7 | −294.7 ± 0.5 [10] | −294.9 | 0.2 |
hexanol | −317.0 | −315.8 ± 0.6 [10] | −315.8 | 0.0 |
heptanol | −338.4 | −336.4 ± 1.0 [10] | −336.7 | 0.3 |
octanol | −359.7 | −356.5 ± 1.5 [10] | −357.7 | 1.2 |
cylopentanone | −192.9 | −192.1 ± 1.8 [10] | −193.9 | 1.8 |
cyclohexanone | −228.4 | −226.1 ± 2.1 [10] | −228.7 | 2.6 |
phenol | −90.8 | −92.5 ± 1.2 [11] | −93.6 | 1.1 |
2-methylphenol | −127.0 | −128.4 ± 0.9 [10] | −129.1 | 0.7 |
4-methylphenol | −122.0 | −125.8 ± 1.5 [10] | −124.2 | −1.6 |
2,3-dimethylphenol | −156.6 | −157.2 ± 1.1 [10] | −158.2 | 1.0 |
2,5-dimethylphenol | −159.5 | −161.6 ± 1.0 [10] | −161.1 | −0.5 |
2,6-dimethylphenol | −161.1 | −161.8 ± 0.5 [10] | −162.6 | 0.8 |
3,4-dimethylphenol | −156.2 | −156.6 ± 0.6 [10] | −157.8 | 1.2 |
3,5-dimethylphenol | −157.7 | −161.6 ± 0.7 [10] | −159.3 | −2.2 |
2,3,6-trimethylphenol | −190.3 | −192.9 ± 1.4 [10] | −191.3 | −1.6 |
2,4,6-trimethylphenol | −192.0 | −192.4 ± 1.3 [12] | −193.0 | 0.6 |
carvacrol (5-isopropyl-2-methylphenol) | −210.8 | −211.4 |
CAS | Compound | a | (g) b | (liq) c |
---|---|---|---|---|
6485-40-1 | (-)-carvone | 130.8 ± 0.7 | 441 | 310.2 d |
99-48-9 | trans-carveol | 159.5 ± 2.8 | 434 | 274.5 |
3792-53-8 | cis-(±)-dihydrocarvone | 122.8 ± 2.8 | 439 | 316.2 |
5524-05-0 | trans-(±)-dihydrocarvone | 123.0 ± 2.0 | 448 | 325.0 |
499-71-8 | carvotanacetone | 126.6 ± 2.5 | 445 | 318.4 |
499-70-7 | trans-(±)-tetrahydrocarvone (carvomenthone) | 124.8 ± 1.8 | 450 | 325.2 |
cis-(±)-tetrahydrocarvone | 125.9 ± 1.9 | 453 | 327.1 | |
619-01-2 | trans-dihydrocarveol | 159.8 ± 2.0 | 451 | 291.2 |
22567-21-1 | cis-dihydrocarveol | 155.4 ± 4.5 | 449 | 293.6 |
536-30-1 | carvotanacetol | 163.2 ± 4.5 | 450 | 286.8 |
499-75-2 | carvacrol | 157.1 ± 0.5 [13] | 455 [13] | 297.9 |
R | a (298 K) | b (298 K) | c (298 K) | d (298 K) | e (400 K) | f (500 K) | lnKa g (298 K) | lnKa g (400 K) | lnKa g (500 K) |
---|---|---|---|---|---|---|---|---|---|
kJ·mol−1 | J·mol−1·K−1 | J·mol−1·K−1 | kJ·mol−1 | kJ·mol−1 | kJ·mol−1 | ||||
partial hydrogenation | |||||||||
1 | −92.7 | −115.9 | −29.0 | −58.2 | −45.9 | −33.1 | 23.5 | 18.5 | 13.4 |
2 | −114.7 | −130.5 | −19.0 | −75.8 | −62.2 | −48.4 | 30.6 | 25.1 | 19.5 |
3 | −70.7 | −158.6 | −0.7 | −23.4 | −7.3 | 8.6 | 9.5 | 2.9 | −3.5 |
4 | −111.8 | −122.5 | −21.6 | −75.3 | −62.5 | −49.3 | 30.4 | 25.2 | 19.9 |
5 | −95.6 | −123.9 | −26.4 | −58.7 | −45.7 | −32.1 | 23.7 | 18.4 | 13.0 |
6 | −56.9 | −166.4 | −3.3 | −7.0 | 10.0 | 26.8 | 2.8 | −4.0 | −10.8 |
7 | −110.4 | −114.0 | −3.9 | −76.4 | −64.8 | −53.2 | 30.8 | 26.1 | 21.5 |
8 | −111.1 | −124.6 | −41.5 | −74.0 | −60.7 | −46.4 | 29.9 | 24.5 | 18.7 |
9 | −110.3 | −118.4 | −19.0 | −75.0 | −62.7 | −50.0 | 30.3 | 25.3 | 20.2 |
10 | −111.2 | −120.2 | −26.4 | −75.4 | −62.8 | −49.6 | 30.4 | 25.3 | 20.0 |
dehydrogenation | |||||||||
11 | 13.9 | 119.2 | 67.2 | −21.6 | −34.7 | −49.6 | 8.7 | 14.0 | 20.0 |
isomerisation | |||||||||
12 | −97.9 | −3.3 | 45.6 | −96.9 | −97.2 | −98.9 | 39.1 | 39.2 | 39.9 |
13 | −1.5 | 8.8 | - | −4.1 | −5.0 | −5.9 | 1.7 | 2.0 | 2.4 |
14 | −1.6 | −1.9 | - | −1.0 | −0.8 | −0.7 | 0.4 | 0.3 | 0.3 |
15 | −9.5 | −2.4 | - | −8.8 | −8.5 | −8.3 | 3.5 | 3.4 | 3.4 |
full hydrogenation | |||||||||
16 | −207.4 | −246.4 | −48.0 | −133.9 | −108.2 | −81.4 | 54.1 | 43.7 | 32.9 |
17 | −278.1 | −404.9 | −48.7 | −157.4 | −115.4 | −72.8 | 63.5 | 46.6 | 29.4 |
18 | −180.2 | −401.6 | −94.3 | −60.5 | −18.2 | 26.1 | 24.4 | 7.4 | −10.5 |
simple ketones h | |||||||||
19 | −70.0 | −150.5 | 6.9 | −25.1 | −9.9 | 4.8 | 10.1 | 4.0 | −2.0 |
20 | −77.0 | −155.8 | 7.6 | −30.6 | −14.8 | 0.4 | 12.3 | 6.0 | −0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samarov, A.A.; Vostrikov, S.V.; Glotov, A.P.; Verevkin, S.P. Thermodynamic Exercises for the Kinetically Controlled Hydrogenation of Carvone. Chemistry 2024, 6, 706-722. https://doi.org/10.3390/chemistry6040042
Samarov AA, Vostrikov SV, Glotov AP, Verevkin SP. Thermodynamic Exercises for the Kinetically Controlled Hydrogenation of Carvone. Chemistry. 2024; 6(4):706-722. https://doi.org/10.3390/chemistry6040042
Chicago/Turabian StyleSamarov, Artemiy A., Sergey V. Vostrikov, Aleksandr P. Glotov, and Sergey P. Verevkin. 2024. "Thermodynamic Exercises for the Kinetically Controlled Hydrogenation of Carvone" Chemistry 6, no. 4: 706-722. https://doi.org/10.3390/chemistry6040042
APA StyleSamarov, A. A., Vostrikov, S. V., Glotov, A. P., & Verevkin, S. P. (2024). Thermodynamic Exercises for the Kinetically Controlled Hydrogenation of Carvone. Chemistry, 6(4), 706-722. https://doi.org/10.3390/chemistry6040042