Design and Rapid Prototyping of 3D-Printed Microfluidic Systems for Multiphase Flow
Abstract
:1. Introduction
2. Materials and Methods
2.1. Printer Characterization
2.2. Device Design
2.2.1. Design Thinking
2.2.2. Rapid Prototyping
2.2.3. Periphery Interfaces
2.3. Surface Treatment After Photopolymerization
2.3.1. Surface Cleaning
- Cleaning the outer surface of the printed device by rinsing it in a tank of IPA for 20 min.
- Application of an ultrasonic bath at 37 kHz, 320 W, and 30 °C for 10 min.
- Flushing the channels 3 times with a syringe, which is filled with 5 mL of fresh IPA, removing most of the resin from the inside of the channels.
- Placing the parts inside a centrifuge to remove the resin, which could not be affected by the previous flushing process, with centrifugal force.
- Removing the IPA and the least amount of resin using a spring steel wire and dental floss, which not only removes the resin solved in the IPA, but also scrubs the inside walls of the channels and clears it from resin that sticks to the surfaces.
- Flushing the channels again as explained in step 3.
- Drying the device with pressurized air before final UV radiation.
2.3.2. Optical Accessibility
2.3.3. Hydrophobic Coating
- Fill the capillary or channel with a solution of 10 vol.-% of the silane (Thermoscientific, Kandel, Germany) in FC-40 (Sigma-Aldrich, St. Louis, MO, USA) for 30 min at room temperature. Ensure that all parts that get in contact with the liquids during application are covered during the treatment.
- Rinse the capillary or channel with a 95 vol.-% ethanol (Sigma-Aldrich, St. Louis, MO, USA) in DI water solution to remove non reacted silane.
- Dry the coated device with nitrogen.
2.3.4. Hydrophilic Coating
- Dissolve 2 mol metacrylic acid (Sigma-Aldrich, St. Louis, MO, USA) and 0.004 mol bisphenol (Sigma-Aldrich, St. Louis, MO, USA) in a 20% ethanol (Sigma-Aldrich, St. Louis, MO, USA)/DI water mixture.
- Fill the solution into the capillary or channel and expose it to UV light at 405 nm for 6 min.
- Rinse capillary or channel with DI water after the reaction.
2.4. Final Device Fabrication and Experimental Setup
3. Results
3.1. Adjustable Co-Flow Setup
3.2. Flow-Focusing Device
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CAD | computer-aided design |
DLP | digital light processing |
FEP | fluoroethylene propylene |
FFF | fused filament fabrication |
IPA | isopropyl alcohol |
LOC | lab-on-a-chip |
MEMS | micro-electromechanical systems |
PDMS | polydimethylsiloxane |
SLA | stereolithography |
UNF | Unified National Fine Thread Series |
μTAS | micro total chemical analysis systems |
Appendix A
References
- Hansen, C. Microfluidics in structural biology: Smaller, faster… better. Curr. Opin. Struct. Biol. 2003, 13, 538–544. [Google Scholar] [CrossRef] [PubMed]
- Theberge, A.B.; Courtois, F.; Schaerli, Y.; Fischlechner, M.; Abell, C.; Hollfelder, F.; Huck, W.T.S. Microdroplets in Microfluidics: An Evolving Platform for Discoveries in Chemistry and Biology. Angew. Chem. Int. Ed. 2010, 49, 5846–5868. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Chen, D.; Xie, Y.; Yuan, T.; Chen, X. Progress of Microfluidics for Biology and Medicine. Nano-Micro Lett. 2013, 5, 66–80. [Google Scholar] [CrossRef]
- Song, P.; Hu, R.; Tng, D.J.H.; Yong, K.T. Moving towards individualized medicine with microfluidics technology. RSC Adv. 2014, 4, 11499. [Google Scholar] [CrossRef]
- Whitesides, G.M. The origins and the future of microfluidics. Nature 2006, 442, 368–373. [Google Scholar] [CrossRef]
- Ho, C.M.; Tai, Y.C. Micro-Electro-Mechanical-Systems (MEMS) and Fluid Flows. Annu. Rev. Fluid Mech. 1998, 30, 579–612. [Google Scholar] [CrossRef]
- Tabeling, P. Introduction to Microfluidics; Includes Bibliographical References and Index; Oxford University Press: Oxford, UK, 2023. [Google Scholar]
- Sun, J.; Warden, A.R.; Ding, X. Recent advances in microfluidics for drug screening. Biomicrofluidics 2019, 13, 061503. [Google Scholar] [CrossRef]
- Whitesides, G.M.; Stroock, A.D. Flexible Methods for Microfluidics. Phys. Today 2001, 54, 42–48. [Google Scholar] [CrossRef]
- Dinter, R.; Willems, S.; Hachem, M.; Streltsova, Y.; Brunschweiger, A.; Kockmann, N. Development of a two-phase flow reaction system for DNA-encoded amide coupling. React. Chem. Eng. 2023, 8, 1334–1340. [Google Scholar] [CrossRef]
- Bobers, J.; Škopić, M.K.; Dinter, R.; Sakthithasan, P.; Neukirch, L.; Gramse, C.; Weberskirch, R.; Brunschweiger, A.; Kockmann, N. Design of an Automated Reagent-Dispensing System for Reaction Screening and Validation with DNA-Tagged Substrates. ACS Comb. Sci. 2020, 22, 101–108. [Google Scholar] [CrossRef]
- Figeys, D.; Pinto, D. Lab-on-a-chip: A revolution in biological and medical sciences. Anal. Chem. 2000, 72, 330A–335A. [Google Scholar] [CrossRef] [PubMed]
- De Stefano, P.; Bianchi, E.; Dubini, G. The impact of microfluidics in high-throughput drug-screening applications. Biomicrofluidics 2022, 16, 031501. [Google Scholar] [CrossRef] [PubMed]
- Jankowski, P.; Kutaszewicz, R.; Ogończyk, D.; Garstecki, P. A microfluidic platform for screening and optimization of organic reactions in droplets. J. Flow Chem. 2019, 10, 397–408. [Google Scholar] [CrossRef]
- Bobers, J.; Grühn, J.; Höving, S.; Pyka, T.; Kockmann, N. Two-Phase Flow in a Coiled Flow Inverter: Process Development from Batch to Continuous Flow. Org. Process Res. Dev. 2020, 24, 2094–2104. [Google Scholar] [CrossRef]
- Ding, Y.; Howes, P.D.; deMello, A.J. Recent Advances in Droplet Microfluidics. Anal. Chem. 2019, 92, 132–149. [Google Scholar] [CrossRef]
- Moragues, T.; Arguijo, D.; Beneyton, T.; Modavi, C.; Simutis, K.; Abate, A.R.; Baret, J.C.; deMello, A.J.; Densmore, D.; Griffiths, A.D. Droplet-based microfluidics. Nat. Rev. Methods Prim. 2023, 3, 32. [Google Scholar] [CrossRef]
- Garstecki, P.; Fuerstman, M.; Stone, H.; Whitesides, G. Formation of droplets and bubbles in a microfluidic T-junction—Scaling and mechanism of break-up. Lab Chip 2006, 6, 437. [Google Scholar] [CrossRef]
- Battat, S.; Weitz, D.A.; Whitesides, G.M. Nonlinear Phenomena in Microfluidics. Chem. Rev. 2022, 122, 6921–6937. [Google Scholar] [CrossRef] [PubMed]
- Schuler, J.; Neuendorf, L.M.; Petersen, K.; Kockmann, N. Micro-computed tomography for the 3D time-resolved investigation of monodisperse droplet generation in a co-flow setup. AIChE J. 2020, 67, e17111. [Google Scholar] [CrossRef]
- Mashaghi, S.; Abbaspourrad, A.; Weitz, D.A.; van Oijen, A.M. Droplet microfluidics: A tool for biology, chemistry and nanotechnology. TrAC Trends Anal. Chem. 2016, 82, 118–125. [Google Scholar] [CrossRef]
- Sackmann, E.K.; Fulton, A.L.; Beebe, D.J. The present and future role of microfluidics in biomedical research. Nature 2014, 507, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.T.; Rotem, A.; Heyman, J.A.; Weitz, D.A. Droplet microfluidics for high-throughput biological assays. Lab Chip 2012, 12, 2146. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Wu, Y.; Fu, J.; Gao, Q.; Qiu, J. Developments of 3D Printing Microfluidics and Applications in Chemistry and Biology: A Review. Electroanalysis 2016, 28, 1658–1678. [Google Scholar] [CrossRef]
- Ren, K.; Zhou, J.; Wu, H. Materials for Microfluidic Chip Fabrication. Acc. Chem. Res. 2013, 46, 2396–2406. [Google Scholar] [CrossRef] [PubMed]
- Nge, P.N.; Rogers, C.I.; Woolley, A.T. Advances in Microfluidic Materials, Functions, Integration, and Applications. Chem. Rev. 2013, 113, 2550–2583. [Google Scholar] [CrossRef]
- Nielsen, A.V.; Beauchamp, M.J.; Nordin, G.P.; Woolley, A.T. 3D Printed Microfluidics. Annu. Rev. Anal. Chem. 2020, 13, 45–65. [Google Scholar] [CrossRef]
- Brittain, S.; Paul, K.; Zhao, X.M.; Whitesides, G. Soft lithography and microfabrication. Phys. World 1998, 11, 31–37. [Google Scholar] [CrossRef]
- Duffy, D.C.; McDonald, J.C.; Schueller, O.J.A.; Whitesides, G.M. Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane). Anal. Chem. 1998, 70, 4974–4984. [Google Scholar] [CrossRef]
- McDonald, J.C.; Duffy, D.C.; Anderson, J.R.; Chiu, D.T.; Wu, H.; Schueller, O.J.A.; Whitesides, G.M. Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 2000, 21, 27–40. [Google Scholar] [CrossRef]
- Sia, S.K.; Whitesides, G.M. Microfluidic devices fabricated in Poly(dimethylsiloxane) for biological studies. Electrophoresis 2003, 24, 3563–3576. [Google Scholar] [CrossRef]
- Ng, J.M.K.; Gitlin, I.; Stroock, A.D.; Whitesides, G.M. Components for integrated poly(dimethylsiloxane) microfluidic systems. Electrophoresis 2002, 23, 3461–3473. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.R.; Chiu, D.T.; Jackman, R.J.; Cherniavskaya, O.; McDonald, J.C.; Wu, H.; Whitesides, S.H.; Whitesides, G.M. Fabrication of Topologically Complex Three-Dimensional Microfluidic Systems in PDMS by Rapid Prototyping. Anal. Chem. 2000, 72, 3158–3164. [Google Scholar] [CrossRef] [PubMed]
- Chiu, D.T.; Jeon, N.L.; Huang, S.; Kane, R.S.; Wargo, C.J.; Choi, I.S.; Ingber, D.E.; Whitesides, G.M. Patterned deposition of cells and proteins onto surfaces by using three-dimensional microfluidic systems. Proc. Natl. Acad. Sci. USA 2000, 97, 2408–2413. [Google Scholar] [CrossRef] [PubMed]
- McDonald, J.C.; Chabinyc, M.L.; Metallo, S.J.; Anderson, J.R.; Stroock, A.D.; Whitesides, G.M. Prototyping of Microfluidic Devices in Poly(dimethylsiloxane) Using Solid-Object Printing. Anal. Chem. 2002, 74, 1537–1545. [Google Scholar] [CrossRef]
- Bhattacharjee, N.; Urrios, A.; Kang, S.; Folch, A. The upcoming 3D-printing revolution in microfluidics. Lab Chip 2016, 16, 1720–1742. [Google Scholar] [CrossRef]
- Au, A.K.; Huynh, W.; Horowitz, L.F.; Folch, A. 3D-Printed Microfluidics. Angew. Chem. Int. Ed. 2016, 55, 3862–3881. [Google Scholar] [CrossRef] [PubMed]
- Gelhausen, M.G.; Feuerbach, T.; Schubert, A.; Agar, D.W. 3D Printing for Chemical Process Laboratories I: Materials and Connection Principles. Chem. Eng. Technol. 2018, 41, 618–627. [Google Scholar] [CrossRef]
- Musgrove, H.; Catterton, M.; Pompano, R. Applied tutorial for the design and fabrication of biomicrofluidic devices by resin 3D printing. Anal. Chim. Acta 2022, 1209, 339842. [Google Scholar] [CrossRef]
- Gyimah, N.; Scheler, O.; Rang, T.; Pardy, T. Can 3D Printing Bring Droplet Microfluidics to Every Lab?—A Systematic Review. Micromachines 2021, 12, 339. [Google Scholar] [CrossRef]
- Guerra, M.; Volpone, C.; Galantucci, L.; Percoco, G. Photogrammetric measurements of 3D printed microfluidic devices. Addit. Manuf. 2018, 21, 53–62. [Google Scholar] [CrossRef]
- Burke, I.; Assies, C.; Kockmann, N. Rapid prototyping of a modular optical flow cell for image-baseddroplet size measurements in emulsification processes. J. Flow Chem. 2024, 14, 515–528. [Google Scholar] [CrossRef]
- Höving, S.; Ronnewinkel, P.; Kockmann, N. From Batch to Continuous Small-Scale Production of Particles: Mixer Design Methodology for Robust Operation. Crystals 2024, 14, 398. [Google Scholar] [CrossRef]
- Dinter, R.; Willems, S.; Nissalk, T.; Hastürk, O.; Brunschweiger, A.; Kockmann, N. Development of a microfluidic photochemical flow reactor concept by rapid prototyping. Front. Chem. 2023, 11, 1244043. [Google Scholar] [CrossRef]
- Meinel, C. Design Thinking; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Battat, S.; Weitz, D.A.; Whitesides, G.M. An outlook on microfluidics: The promise and the challenge. Lab Chip 2022, 22, 530–536. [Google Scholar] [CrossRef]
- Wang, J.; Shao, C.; Wang, Y.; Sun, L.; Zhao, Y. Microfluidics for Medical Additive Manufacturing. Engineering 2020, 6, 1244–1257. [Google Scholar] [CrossRef]
- Kockmann, N. Modular Equipment for Chemical Process Development and Small-Scale Production in Multipurpose Plants. ChemBioEng Rev. 2015, 3, 5–15. [Google Scholar] [CrossRef]
- Gong, H.; Bickham, B.P.; Woolley, A.T.; Nordin, G.P. Custom 3D printer and resin for 18 μm × 20 μm microfluidic flow channels. Lab Chip 2017, 17, 2899–2909. [Google Scholar] [CrossRef]
- Ahmadianyazdi, A.; Miller, I.J.; Folch, A. Tunable resins with PDMS-like elastic modulus for stereolithographic 3D-printing of multimaterial microfluidic actuators. Lab Chip 2023, 23, 4019–4032. [Google Scholar] [CrossRef]
- Schittecatte, L.; Geertsen, V.; Bonamy, D.; Nguyen, T.; Guenoun, P. From resin formulation and process parameters to the final mechanical properties of 3D printed acrylate materials. MRS Commun. 2023, 13, 357–377. [Google Scholar] [CrossRef]
- Catterton, M.A.; Montalbine, A.N.; Pompano, R.R. Selective Fluorination of the Surface of Polymeric Materials after Stereolithography 3D Printing. Langmuir 2021, 37, 7341–7348. [Google Scholar] [CrossRef]
- Oldach, B.; Wintermeyer, P.; Kockmann, N. Transfer of Periodic Phenomena in Multiphase Capillary Flows to a Quasi-Stationary Observation Using U-Net. Computers 2024, 13, 230. [Google Scholar] [CrossRef]
- Oldach, B.; Chiang, Y.Y.; Ben-Achour, L.; Chen, T.J.; Kockmann, N. Performance of different microfluidic devices in continuous liquid-liquid separation. J. Flow Chem. 2024, 14, 547–557. [Google Scholar] [CrossRef]
- Bacha, T.W.; Manuguerra, D.C.; Marano, R.A.; Stanzione, J.F. Hydrophilic modification of SLA 3D printed droplet generators by photochemical grafting. RSC Adv. 2021, 11, 21745–21753. [Google Scholar] [CrossRef] [PubMed]
Printing Parameter | Reason to Modify * | Default Value | Advanced Value |
---|---|---|---|
Layer thickness | To adjust print speed, surface finish, or Z-axis fine feature performance. Increasing this value can improve print speed. Decreasing this value can improve surface finish or fine feature resolution. | 25 μm | 25 μm |
X, Y, Z correction factor | To adjust dimensional accuracy of large features (larger than several millimeters) in the X, Y, or Z direction and compensate for the volumetric shrinkage of each material. | 1.005; 1.005; 1 | 1; 1; 1 |
Perimeter to nominal geometry spacing | To correct for cases where small features (millimeter scale) are undersized or oversized. | −0.05 mm | 0 mm |
Perimeter fill exposure | To change the surface hardness and surface tackiness of the model. Increase this value to make the print surfaces harder and less tacky. | 31 mJ | 20 mJ |
Model fill exposure | To change the green state strength and stiffness of the model. In most cases, higher green strength results in better print success rate, surface finish, and dimensional accuracy. | 31 mJ | 20 mJ |
Top surface exposure | To change the surface tackiness or surface hardness of any flat top surfaces on the print. | 31 mJ | 20 mJ |
Operating temperature | To adjust the resin temperature that the printer maintains during printing. Higher resin temperatures usually increase resin reactivity and decrease resin viscosity. Increased resin reactivity can impact print speed, dimensional accuracy, and surface finish. Decreased resin viscosity can impact print speed, print success rate, and print quality. | 35 °C | 35 °C |
Prototype | Two-Phase Flow | Changelog * | Flow Regime |
---|---|---|---|
P1.0 | = = 1.6 mm; = 10° | stable and uniform slug flow | |
P1.1 | = 20° | stable and uniform slug flow with slightly smaller slugs; high slug formation frequency | |
P1.2 | = 1.0 mm | stable and uniform slug flow with larger slugs; low slug formation frequency | |
P1.3 | = 1.0 mm | droplet flow; high drop formation frequency | |
P1.4 | = = 1.0 mm | droplet flow; high drop formation frequency |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oldach, B.; Fortmann, R.; Pleie, T.; Timm, P.; Kockmann, N. Design and Rapid Prototyping of 3D-Printed Microfluidic Systems for Multiphase Flow. Chemistry 2024, 6, 1458-1476. https://doi.org/10.3390/chemistry6060088
Oldach B, Fortmann R, Pleie T, Timm P, Kockmann N. Design and Rapid Prototyping of 3D-Printed Microfluidic Systems for Multiphase Flow. Chemistry. 2024; 6(6):1458-1476. https://doi.org/10.3390/chemistry6060088
Chicago/Turabian StyleOldach, Bastian, Robin Fortmann, Theo Pleie, Philip Timm, and Norbert Kockmann. 2024. "Design and Rapid Prototyping of 3D-Printed Microfluidic Systems for Multiphase Flow" Chemistry 6, no. 6: 1458-1476. https://doi.org/10.3390/chemistry6060088
APA StyleOldach, B., Fortmann, R., Pleie, T., Timm, P., & Kockmann, N. (2024). Design and Rapid Prototyping of 3D-Printed Microfluidic Systems for Multiphase Flow. Chemistry, 6(6), 1458-1476. https://doi.org/10.3390/chemistry6060088