Nitrogen-Doped MXene Electrodes for High-Voltage Window Supercapacitors in Organic Electrolytes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Ti3AlC2 Powders
2.2. Synthesis of Ti3C2Tx MXene
2.3. Nitrogen Doping of Few-Layer d-Ti3C2Tx Flakes (UN-Ti3C2Tx Films)
2.4. The Preparation for Organic Electrolytes
2.5. Morphology and Structure Characterizations
2.6. Electrochemical Measurements
3. Results and Discussion
3.1. Structure and Morphological Analysis
3.2. Electrochemical Performance Testing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Feng, D.; Lei, T.; Lukatskaya, M.R.; Park, J.; Huang, Z.; Lee, M.; Shaw, L.; Chen, S.; Yakovenko, A.A.; Kulkarni, A.; et al. Robust and conductive two-dimensional metal-organic frameworks with exceptionally high volumetric and areal capacitance. Nat. Energy 2018, 3, 30–36. [Google Scholar] [CrossRef]
- Shao, Y.; EI-Kady, M.F.; Sun, J.; Li, Y.; Zhang, Q.; Zhu, M.; Wang, H.; Dunn, B.; Kaner, R.B. Design and Mechanisms of Asymmetric Supercapacitors. Chem. Rev. 2018, 118, 9233–9280. [Google Scholar] [CrossRef]
- Lukatskaya, M.R.; Bruce, D.; Yury, G. Multidimensional materials and device architectures for future hybrid energy storage. Nat. Commun. 2016, 7, 12647. [Google Scholar] [CrossRef] [PubMed]
- Michael, N.; Murat, K.; Volker, P.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253. [Google Scholar]
- Lukatskaya, M.R.; Mashtalir, O.; Ren, E.C.; Dall’agnese, Y.; Rozier, P.; Taberna, P.L.; Naguib, M.; Simon, P.; Barsoum, M.W.; Gogotsi, Y. Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide. Science 2013, 341, 1502–1505. [Google Scholar] [CrossRef] [PubMed]
- Hart, J.L.; Kanit, H.; Lang, A.C.; Anasori, B.; Pinto, D.; Pivak, Y.; van Omme, J.T.; May, S.J.; Gogotsi, Y.; Taheri, M.L. Control of MXenes’ electronic properties through termination and intercalation. Nat. Commun. 2019, 10, 522. [Google Scholar] [CrossRef]
- Lukatskaya, M.R.; Kota, S.; Lin, Z.; Zhao, M.-Q.; Shpigel, N.; Levi, M.D.; Halim, J.; Taberna, P.-L.; Barsoum, M.W.; Simon, P.; et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2017, 2, 12647–12854. [Google Scholar] [CrossRef]
- Wang, Z.; Zhong, X.; Huang, H.; Chu, X.; Xie, Y.; Xiong, D.; Yan, C.; Zhao, H.; Zhang, H.; Yang, W. Unraveling and Regulating Self-Discharge Behavior of Ti3C2Tx MXene-Based Supercapacitors. ACS Nano 2020, 14, 4916–4924. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Zhang, W.; Wang, J.; Zheng, W.; Huang, K.; Zhang, H.; Feng, S.; Chen, H. (EMIm)+ (PF6)− ionic liquid unlocks optimum energy/power density for architecture of nanocarbon-based dual-ion battery. Adv. Energy Mater. 2016, 6, 1601378. [Google Scholar] [CrossRef]
- Lei, Z.; Chen, B.; Koo, Y.; MacFarlane, D. Introduction: Ionic Liquids. Chem. Rev. 2017, 117, 6633–6635. [Google Scholar] [CrossRef]
- Bag, S.; Samanta, A.; Bhunia, P.; Raj, C.R. Rational functionalization of reduced graphene oxide with imidazolium-based ionic liquid for supercapacitor application. Int. J. Hydrogen Energy 2016, 41, 22134–22143. [Google Scholar] [CrossRef]
- Zhou, H.; Sun, W.; Li, J. Preparation of spiro-type quaternary ammonium salt via economical and efficient synthetic route as electrolyte for electric double-layer capacitor. J. Cent. South Univ. 2015, 22, 2435–2439. [Google Scholar] [CrossRef]
- Dall’Agnese, Y.; Rozier, P.; Taberna, P.; Gogotsi, Y.; Simon, P. Capacitance of two-dimensional titanium carbide (MXene) and MXene/carbon nanotube composites in organic electrolytes. J. Power Sources 2016, 306, 510–515. [Google Scholar] [CrossRef]
- Lin, Z.; Barbara, D.; Taberna, P.; Van Aken, K.L.; Anasori, B.; Gogotsi, Y.; Simon, P. Capacitance of Ti3C2Tx MXene in ionic liquid electrolyte. J. Power Sources 2016, 326, 575–579. [Google Scholar] [CrossRef]
- Lin, Z.; Rozier, P.; Duployer, B.; Taberna, P.L.; Anasori, B.; Gogotsi, Y.; Simon, P. Electrochemical and in-situ X-ray diffraction studies of Ti3C2Tx MXene in ionic liquid electrolyte. Electrochem. Commun. 2016, 72, 50–53. [Google Scholar] [CrossRef]
- Liang, K.; Matsumoto, R.A.; Zhao, W.; Osti, N.C.; Popov, I.; Thapaliya, B.P.; Fleischmann, S.; Misra, S.; Prenger, K.; Tyagi, M.; et al. Engineering the Interlayer Spacing by Pre-Intercalation for High Performance Supercapacitor MXene Electrodes in Room Temperature Ionic Liquid. Adv. Funct. Mater. 2021, 31, 2104007. [Google Scholar] [CrossRef]
- Gandla, D.; Zhang, F.; Tan, D. Advantage of Larger Interlayer Spacing of a Mo2Ti2C3 MXene Free-Standing Film Electrode toward an Excellent Performance Supercapacitor in a Binary Ionic Liquid-Organic Electrolyte. J. Am. Chem. Soc. 2022, 7, 7190–7198. [Google Scholar] [CrossRef] [PubMed]
- Masashi, O.; Akira, S.; Satoshi, K.; Yamada, A. MXene as a Charge Storage Host. Acc. Chem. Res. 2018, 51, 591–599. [Google Scholar]
- Sun, L.; Zhuo, K.; Chen, Y.; Du, Q.; Zhang, S.; Wang, J. Ionic Liquid-Based Redox Active Electrolytes for Supercapacitors. Adv. Funct. Mater. 2022, 32, 2203611. [Google Scholar] [CrossRef]
- Lu, C.; Li, Y.; Yan, B.; Sun, L.; Zhang, P.; Zhang, W.; Sun, Z.M. Nitrogen-Doped Ti3C2 MXene: Mechanism Investigation and Electrochemical Analysis. Adv. Funct. Mater. 2020, 30, 2000852. [Google Scholar] [CrossRef]
- Yang, C.; Tang, Y.; Tian, Y.; Luo, Y.; Din, M.F.U.; Yin, X.; Que, W. Flexible Nitrogen-Doped 2D Titanium Carbides (MXene) Films Constructed by an Ex Situ Solvothermal Method with Extraordinary Volumetric Capacitance. Adv. Energy Mater. 2018, 8, 1802087. [Google Scholar] [CrossRef]
- Naguib, M.; Come, J.; Dyatkin, B.; Presser, V.; Taberna, P.-L.; Simon, P.; Barsoum, M.W.; Gogotsi, Y. MXene: A promising transition metal carbide anode for lithium-ion batteries. Electrochem. Commun. 2012, 16, 61–64. [Google Scholar] [CrossRef]
- Yang, C.; Tang, Y.; Tian, Y.; Luo, Y.; Yin, X.; Que, W. Methanol and Diethanolamine Assisted Synthesis of Flexible Nitrogen-Doped Ti3C2 (MXene) Film for Ultrahigh Volumetric Performance Supercapacitor Electrodes. ACS Appl. Energy Mater. 2019, 3, 586–596. [Google Scholar] [CrossRef]
- Dall’Agnese, Y.; Lukatskaya, R.M.; Cook, M.K.; Taberna, P.L.; Gogotsi, Y.; Simon, P. High capacitance of surface-modified 2D titanium carbide in acidic electrolyte. Electrochem. Commun. 2014, 481, 18–22. [Google Scholar] [CrossRef]
- Xie, Y.; Chen, G.; Tang, Y.; Wang, Z.; Zhou, J.; Bi, Z.; Xuan, X.; Zou, J.; Zhang, A.; Yang, C. Unraveling the Ionic Storage Mechanism of FlexibleNitrogen-Doped MXene Films for High-PerformanceAqueous Hybrid Supercapacitors. Small 2024, 20, 2405817. [Google Scholar] [CrossRef] [PubMed]
- Nishad, H.; Mane, M.; Patole, P.; Lee, J.; Gosavi, S.; Walke, P.S. Temperature driven pseudocapactive performance of WO3/MXene nanocomposite for asymmetric aqueous supercapacitors. Chem. Eng. J. 2024, 495, 153360. [Google Scholar] [CrossRef]
- Zhu, Y.; Rajouâ, K.; Vot, L.S.; Fontaine, O.; Simon, P.; Favier, F. MnO2-MXene Composite as Electrode for Supercapacitor. J. Electrochem. Soc. 2022, 169, 0305524. [Google Scholar] [CrossRef]
- Yang, L.; Zheng, W.; Zhang, P.; Chen, J.; Tian, W.; Zhang, Y.; Sun, Z. MXene/CNTs films prepared by electrophoretic deposition for supercapacitor electrodes. J. Electroanal. Chem. 2018, 830, 1–6. [Google Scholar] [CrossRef]
- Cai, Z.; Ma, Y.; Wang, M.; Qian, A.N.; Tong, Z.M.; Xiao, L.T.; Jia, S.T.; Chen, X.Y. Engineering of electrolyte ion channels in MXene/holey graphene electrodes for superior supercapacitive performances. Rare Met. 2022, 41, 2084–2093. [Google Scholar] [CrossRef]
- Shivade, S.; Kurade, N.; Bhosale, K.; Kundale, S.S.; Shelake, A.R.; Patil, A.D.; Waifalkar, P.P.; Kamat, R.K.; Teli, A.M.; Dongale, T.D. Folic acid-assisted in situ solvothermal synthesis of Ni-MOF/MXene composite for high-performance supercapacitors. J. Energy Storage 2024, 100, 113754. [Google Scholar] [CrossRef]
- Li, P.; Guan, G.; Shi, X.; Lu, L.; Fan, Y.C.; Xu, J.; Shang, Y.Y.; Zhang, Y.J.; Wei, J.Q.; Guo, F.M. Bidirectionally aligned MXene hybrid aerogels assembled with MXene nanosheets and microgels for supercapacitors. Rare Met. 2023, 42, 1249–1260. [Google Scholar] [CrossRef]
- Liu, Z.; Xue, F.; Zhao, X.; Chen, Z.; Zheng, H.; Ding, R.; Li, P.; Xu, L.; Xiong, J.; Peng, Q.; et al. Anti-stacking synthesis of MXene-reduced graphene oxide sponges for aqueous zinc-ion hybrid supercapacitor with improved performance. J. Mater. Sci. Technol. 2023, 154, 22–29. [Google Scholar] [CrossRef]
- Huang, Y.; Liang, J.; Chen, Y. An overview of the applications of graphene-based materials in supercapacitors. Small 2012, 8, 1805–1834. [Google Scholar] [CrossRef] [PubMed]
Electrode | Electrolyte | Voltage Window | Specific Capacitance | Energy Density | Ref. |
---|---|---|---|---|---|
WO3/MXene | 1 M H2SO4 | −0.5~0 V | 290 F g−1 @ 1 A g−1 | 14 Wh kg−1 @ 6000W kg−1 | [26] |
MnO2-MXene | 1 M Na2SO4 | 0~1 V | 165 F g−1 @ 0.5 A g−1 | 20 Wh kg−1 @ 500 W kg−1 | [27] |
MXene/CNTs | 6 M KOH | 0~0.6 V | 55.3 F g−1 @ 0.5 A g−1 | 2.77 Wh kg−1 @ 311 W kg−1 | [28] |
MXene/HG | 1 M H2SO4 | −0.5~0.5 V | 106.86 F g−1 @ 0.5 A g−1 | 14.84 Wh kg−1 @ 250 W kg−1 | [29] |
Ni-MOF/ MXene | 1 M KOH | 0~0.5 V | 716.19 F g−1 @ 1 A g−1 | 16.59 Wh kg−1 @ 4182 W kg1 | [30] |
MXene-rGO | 3 M H2SO4 | 0~0.6 V | 347.6 F g−1 @ 2 mv s−1 | 11. 7 Wh kg−1 @ 140.1 W kg1 | [31] |
Aligned MXene hybrid aerogels (A-MHA) | 1 M H2SO4 | −0.45~0.35 V | 760 F g−1 @ 1 A g−1 | 5.2 Wh kg−1 @ 69.9 W kg1 | [32] |
MXene/MWCNTs | 1 M EMITFSI/ACN | −1.5~1.5 V | 85 F g−1 @ 2 mv s−1 | - | [13] |
MXene hydrogel | EMITFSI | 0~3 V | 70 F g−1 @ 20 mv s−1 | - | [14] |
N-doped MXene | 1 M (C4H9)4N(ClO4)/NaTFSI/ACN | 0~2.4 V | 37.9 F g−1 @ 0.5 A g−1 | 8.13 Wh kg−1 @ 360 W kg1 | This work |
N-doped MXene | 1 M EMIMTFSI/NaTFSI/ACN | 0~2.4 V | 55.9 F g−1 @ 0.5 A g−1 | 11.18 Wh kg−1 @ 600 W kg1 | This work |
N-doped MXene | 1 M EMIMTFSI/LiTFSI/ACN | 0~2.4 V | 147 F g−1 @ 0.5 A g−1 | 29.4 Wh kg−1 @ 600 W kg1 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, Y.; Bin, X.; Xu, J.; He, X.; Que, W. Nitrogen-Doped MXene Electrodes for High-Voltage Window Supercapacitors in Organic Electrolytes. Chemistry 2025, 7, 13. https://doi.org/10.3390/chemistry7010013
Liao Y, Bin X, Xu J, He X, Que W. Nitrogen-Doped MXene Electrodes for High-Voltage Window Supercapacitors in Organic Electrolytes. Chemistry. 2025; 7(1):13. https://doi.org/10.3390/chemistry7010013
Chicago/Turabian StyleLiao, Yingyi, Xiaoqing Bin, Jing Xu, Xuedong He, and Wenxiu Que. 2025. "Nitrogen-Doped MXene Electrodes for High-Voltage Window Supercapacitors in Organic Electrolytes" Chemistry 7, no. 1: 13. https://doi.org/10.3390/chemistry7010013
APA StyleLiao, Y., Bin, X., Xu, J., He, X., & Que, W. (2025). Nitrogen-Doped MXene Electrodes for High-Voltage Window Supercapacitors in Organic Electrolytes. Chemistry, 7(1), 13. https://doi.org/10.3390/chemistry7010013