Survivability of Salmonella Pathogens and Physicochemical Characteristics of Powder Goat Milk Stored under Different Storage Treatment Regimens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Preparation of Experimental Powdered Goat Milk Products
2.3. Salmonella Survivability Experiments
2.3.1. Preparation of Salmonella Serotypes and Their Inoculation in PGM Samples
2.3.2. Enumeration of Salmonella Cell Counts
2.4. Physicochemical Assay
2.4.1. pH and Water Activity
2.4.2. Water Activity
2.4.3. Peroxide Value (POV)
2.5. Nutritional Analysis
2.5.1. Moisture and Ash
2.5.2. Protein Content
2.5.3. Fat Content
2.6. Fatty Acid Analysis
2.6.1. Extraction of Fat
2.6.2. Preparation of Fatty Acid Methyl Esters (FAME)
2.6.3. GC (Gas Chromatograph) Analysis of Fatty Acids
2.7. Statistical Analysis
3. Results and Discussion
3.1. Survivability of Salmonella in the Experimenatal Powdered Goat Milk
3.2. Physicochemical Characteristics of the PGM
3.2.1. pH and Water activity
3.2.2. Peroxide Value (POV)
3.3. Nutritional Characteristics of the PGM
3.3.1. Basic Nutrients
3.3.2. Fatty Acid Profiles
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- United States Dairy Export Council (USDEC). Reference Manual for U.S. Milk Powders: 2005 Revised Edition. 12, 36. Available online: http://www.thinkusadairy.org/resources-and-insights/resources-and-insights/product-resources/reference-manual-for-us-milk-powders (accessed on 3 January 2016).
- Tehrany, E.A.; Sonneveld, K. Packaging and the shelf life of milk powders. In Food Packaging and Shelf Life; CRC Press: Boca Raton, FL, USA, 2010; pp. 128–137. [Google Scholar]
- Beuchat, L.R.; Komitopoulou, E.; Beckers, H.; Betts, R.P.; Bourdichon, F.; Fanning, S.; Joosten, H.M.; Ter Kuile, B.H. Low–water activity foods: Increased concern as vehicles of foodborne pathogens. J. Food Prot. 2013, 76, 150–172. [Google Scholar] [CrossRef] [PubMed]
- Lian, F.; Zhao, W.; Yang, R.J.; Tang, Y.; Katiyo, W. Survival of Salmonella enteric in skim milk powder with different water activity and water mobility. J. Food Cont. 2015, 47, 1–6. [Google Scholar] [CrossRef]
- Lang, E.; Chemlal, L.; Molin, P.; Guyot, S.; Alvarez-Martin, P.; Perrier-Cornet, J.M.; Dantigny, P.; Gervais, P. Modeling the heat inactivation of foodborne pathogens in milk powder: High relevance of the substrate water activity. J. Food Res. Int. 2017, 99, 577–585. [Google Scholar] [CrossRef]
- Davis, B.I.; Siddique, A.; Mahapatra, A.K.; Park, Y.W. Survivability of Escherichia Coli in Commercial Powder Goat Milk during Four Months Storage at Two Different Temperatures. J. Adv. Dairy Res. 2018, 6, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Ballom, K.F.; Tsai, H.C.; Taylor, M.; Tang, J.; Zhu, M.J. Stability of Listeria monocytogenes in non-fat dry milk powder during isothermal treatment and storage. J. Food Microbiol. 2020, 87, 103376. [Google Scholar] [CrossRef]
- Beuchat, L.R.; Kim, H.; Gurtler, J.B.; Lin, L.C.; Ryu, J.H.; Richards, G.M. Cronobacter sakazakii in foods and factors affecting its survival, growth, and inactivation. Int. J. Food Microbial. 2009, 136, 204–213. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Salmonella; 2020. Available online: https://www.cdc.gov/salmonella/index.html (accessed on 2 October 2020).
- Centers for Disease Control and Prevention. Salmonella serotype Tennessee in powdered milk products and infant formula—Canada and United States. Morb. Mortal. Wkly. Rep. 1993, 42, 516–517. Available online: https://www.cdc.gov/mmwr/preview/mmwrhtml/00021081.htm (accessed on 21 October 2020).
- Brouard, C.; Espié, E.; Weill, F.X.; Kérouanton, A.; Brisabois, A.; Forgue, A.M.; de Valk, H. Two consecutive large outbreaks of Salmonella enterica serotype Agona infections in infants linked to the consumption of powdered infant formula. J. Pediatric Infect. Dise. 2007, 26, 148–152. [Google Scholar] [CrossRef]
- Koseki, S.; Nakamura, N.; Shiina, T. Comparison of desiccation tolerance among Listeria monocytogenes, Escherichia coli O157: H7, Salmonella enterica, and Cronobacter sakazakii in powdered infant formula. J. Food Prot. 2015, 78, 104–110. [Google Scholar] [CrossRef]
- Juven, B.J.; Cox, N.A.; Bailey, J.S.; Thomson, J.E.; Charles, O.W.; Shutze, J.V. Survival of Salmonella in dry food and feed. J. Food Prot. 1984, 47, 445–448. [Google Scholar] [CrossRef] [PubMed]
- FDA. Food Products Recalls Due to Products has the Potential Contamination by Salmonella 2020. Available online: https://www.fda.gov/safety/recalls-market-withdrawals-safety-alerts (accessed on 21 October 2020).
- Keogh, B.P. Bacteriology. The survival of pathogens in cheese and milk powder. J. Dairy Res. 1971, 38, 91–111. [Google Scholar] [CrossRef] [PubMed]
- Doyle, M.E.; Mazzotta, A.S. Review of studies on the thermal resistance of Salmonellae. J. Food Prot. 2000, 63, 779–795. [Google Scholar] [CrossRef] [PubMed]
- Kajal, M.F.I.; Wadud, A.; Islam, M.N.; Sarma, P.K. Evaluation of some chemical parameters of powder milk available in Mymensingh town. J. Bangladesh Agri. Uni. 2012, 10, 95–100. [Google Scholar] [CrossRef] [Green Version]
- Schuck, P.; Floch-Fouere, C.L.; Jeantet, R. Changes in Functional Properties of Milk Protein Powders: Effects of Vacuum Concentration and Drying. J. Drying Technol. 2013, 31, 1578–1591. [Google Scholar] [CrossRef]
- Hyeon, J.Y.; Park, C.; Choi, I.S.; Holt, P.S.; Seo, K.H. Development of multiplex real-time PCR with Internal amplification control for simultaneous detection of Salmonella and Cronobacter in powdered infant formula. Int. J. Food Microbiol. 2010, 144, 177–181. [Google Scholar] [CrossRef] [PubMed]
- AOCS. Official Methods and Recommended Practices of the American Oil Chemists’ Society; American Oil Chemists’ Society: Champaign, IL, USA, 1975. [Google Scholar]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar]
- AOAC. Official Methods of Analysis of the AOAC International, 16th ed.; AOAC International: Arlington, VA, USA, 1995; p. 489. [Google Scholar]
- SAS. Ver. 9.4. Users Guide; SAS Inst. Inc.: Cary, NC, USA, 2013. [Google Scholar]
- Steel, R.G.; Torrie, J. Principales and Pricedures of Statistics; Mcgraw-Hill Book Company, Inc.: New York, NY, USA; Toronto, ON, Canada; London, UK, 1960. [Google Scholar]
- Huang, L. IPMP 2013-A comprehensive data analysis tool for predictive microbiology. Int. J. Food Microbiol. 2014, 171, 100–107. [Google Scholar] [CrossRef]
- Blessington, T.; Mitcham, E.J.; Harris, L.J. Survival of Salmonella enterica, Escherichia coli O157: H7, and Listeria monocytogenes on inoculated walnut kernels during storage. J. Food Prot. 2012, 75, 245–254. [Google Scholar] [CrossRef]
- Keller, S.E.; VanDoren, J.M.; Grasso, E.M.; Halik, L.A. Growth and survival of Salmonella in ground black pepper (Piper nigrum). Food Microbiol. 2013, 34, 182–188. [Google Scholar] [CrossRef]
- Davies, R.H.; Wray, C. Persistence of Salmonella enteritidis in poultry units and poultry food. J. Br. Poult. Sci. 1996, 37, 589–596. [Google Scholar] [CrossRef]
- Tamminga, S.K.; Beumer, R.R.; Kampelmacher, E.H.; Van Leusden, F.M. Survival of Salmonella eastbourne and Salmonella typhimurium in milk chocolate prepared with artificially contaminated milk powder. J. Epid. Infect. 1977, 79, 333–337. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.; Ryu, J.H.; Beuchat, L.R. Influence of temperature and pH on survival of Escherichia coli O157: H7 in dry foods and growth in reconstituted infant rice cereal. Int. J. Food Microbiol. 1998, 45, 173–184. [Google Scholar] [CrossRef] [PubMed]
- Pal, M.; Alemu, J.; Mulu, S.; Karanfil, O.; Parmar, B.C.; Nayak, J.B. Microbial and hygienic aspects of dry milk powder. J. Beve. Food World 2016, 7, 28–31. [Google Scholar]
- McDonough, F.E.; Hargrove, R.E. Heat resistance of Salmonella in dried milk. J. Dairy Sci. 1968, 51, 1587–1591. [Google Scholar] [CrossRef]
- Fennema, O.R. Food Chemistry, 3rd ed.; Marcel Dckker Inc.: New York, NY, USA, 1996; pp. 255–299. [Google Scholar]
- Romeu-Nadal, M.; Chavez-Servin, J.L.; Castellote, A.I.; Rivero, M.; Lopez-Sabater, M.C. Oxidation stability of the lipid fraction in milk powder formulas. J. Food Chem. 2007, 100, 756–763. [Google Scholar] [CrossRef]
- Lloyd, M.A.; Drake, M.A.; Gerard, P.D. Flavor variability and flavor stability of US-produced whole milk powder. J. Food Sci. 2009, 74, S334–S343. [Google Scholar] [CrossRef]
- Park, Y.W. Proteolysis and lipolysis of goat milk cheese. J. Dairy Sci. 2001, 84, E84–E92. [Google Scholar] [CrossRef]
- Park, Y.W. Goat Milk: Chemistry and Nutrition. In Handbook of Milk of Non-Bovine Mammals; Park, Y.W., Haenlein, G.F.W., Eds.; Blackwell Publishing: Ames, IA, USA, 2006; pp. 34–58. [Google Scholar] [CrossRef]
- Park, Y.W. Goat Milk–Chemistry and Nutrition. Handbook of Milk of Non-Bovine Mammals, 2nd ed.; Park, Y.W., Haenlein, G.H.W., Wendorff, W., Eds.; Wiley Publishing: Oxford, UK, 2017; pp. 42–83. [Google Scholar] [CrossRef]
Parameter | DF | Mean Square | F-Value |
---|---|---|---|
B | 2 | 0.91 | 8.83 * |
SP | 9 | 4.78 | 46.32 ** |
ST | 1 | 15.49 | 150.15 ** |
B × SP | 29 | 1.64 | 6.20 ** |
B × ST | 5 | 3.47 | 7.33 ** |
SP × ST | 19 | 3.22 | 30.17 ** |
B × SP × ST | 59 | 1.13 | 15.39 ** |
Parameter | pH | Water Activity | Moisture | Peroxide Value |
---|---|---|---|---|
B | 0.83 | 3.08 | 0.38 | 2.13 |
SP | 19.21 ** | 0.06 | 3.54 * | 28.25 ** |
ST | 8.20 * | 1.01 | 17.14 ** | 3.59 |
B × ST | 1.11 | 1.65 | 4.64 ** | 1.4 |
B × SP | 4.12 ** | 1.26 | 1.56 | 6.68 ** |
SP × ST | 25.36 ** | 0.48 | 5.57 ** | 16.19 ** |
B × ST × SP | 13.72 ** | 0.83 | 60.8 ** | 11.84 ** |
Fatty Acid | Storage Temperature (°C) | 0 Month | 2 Months | 4 Months | |||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | ||
C4:0 | 4 | 0.23 | 0.03 | 0.22 | 0.03 | 0.24 | 0.06 |
25 | 0.23 | 0.03 | 0.20 | 0.01 | 0.18 | 0.01 | |
C6:0 | 4 | 0.54 | 0.02 | 0.53 | 0.02 | 0.49 | 0.01 |
25 | 0.54 | 0.02 | 0.49 | 0.01 | 0.45 | 0.01 | |
C8:0 | 4 | 6.68 | 0.29 | 6.59 | 0.34 | 6.48 | 0.36 |
25 | 6.68 | 0.29 | 6.49 | 0.05 | 6.42 | 0.01 | |
C10:0 | 4 | 0.15 | 0.03 | 0.27 | 0.33 | 0.42 | 0.47 |
25 | 0.15 | 0.03 | 0.08 | 0.03 | 0.06 | 0.01 | |
C12:0 | 4 | 0.07 | 0.00 | 0.06 | 0.01 | 0.05 | 0.01 |
25 | 0.07 | 0.00 | 0.04 | 0.02 | 0.03 | 0.02 | |
C14:0 | 4 | 0.34 | 0.04 | 0.31 | 0.07 | 0.27 | 0.04 |
25 | 0.34 | 0.04 | 0.31 | 0.02 | 0.25 | 0.01 | |
C14:1 | 4 | 0.23 | 0.03 | 0.34 | 0.14 | 0.31 | 0.14 |
25 | 0.23 | 0.03 | 0.23 | 0.02 | 0.19 | 0.02 | |
C16:0 | 4 | 1.52 | 0.05 | 1.49 | 0.08 | 1.41 | 0.08 |
25 | 1.52 | 0.05 | 1.45 | 0.03 | 1.37 | 0.02 | |
C16:1 | 4 | 0.75 | 0.05 | 0.73 | 0.05 | 0.69 | 0.07 |
25 | 0.75 | 0.05 | 0.70 | 0.03 | 0.62 | 0.05 | |
C18:0 | 4 | 1.84 | 0.06 | 1.55 | 0.37 | 1.38 | 0.29 |
25 | 1.84 | 0.06 | 1.72 | 0.02 | 1.67 | 0.03 | |
C18:1 | 4 | 7.88 | 0.13 | 7.75 | 0.21 | 7.58 | 0.30 |
25 | 7.88 | 0.13 | 7.73 | 0.03 | 7.62 | 0.02 | |
C18:2 | 4 | 2.22 | 0.12 | 2.17 | 0.13 | 2.11 | 0.14 |
25 | 2.22 | 0.12 | 2.12 | 0.11 | 1.91 | 0.05 | |
C18:3 | 4 | 0.38 | 0.03 | 0.34 | 0.06 | 0.32 | 0.04 |
25 | 0.38 | 0.03 | 0.32 | 0.02 | 0.28 | 0.03 | |
C20:0 | 4 | 0.07 | 0.00 | 0.06 | 0.01 | 0.15 | 0.22 |
25 | 0.07 | 0.00 | 0.05 | 0.01 | 0.04 | 0.01 | |
C22:0 | 4 | 0.01 | 0.00 | 0.02 | 0.01 | 0.02 | 0.01 |
25 | 0.01 | 0.00 | 0.01 | 0.00 | 0.02 | 0.02 | |
C24:0 | 4 | 0.05 | 0.00 | 0.05 | 0.01 | 0.03 | 0.01 |
25 | 0.05 | 0.00 | 0.04 | 0.02 | 0.01 | 0.01 |
Parameter | DF | C4:0 | C6:0 | C8:0 | C10:0 |
---|---|---|---|---|---|
B | 2 | 2.15 | 2.56 | 27.82 *** | 3.04 |
SP | 2 | 1.88 | 37.34 *** | 6.82 ** | 0.52 |
ST | 1 | 4.98 * | 21.24 *** | 1.09 | 6.15 * |
B × SP | 8 | 3.49 * | 7.82 ** | 9.28 ** | 1.58 |
B × ST | 5 | 2.52 | 1.56 | 15.86 *** | 4.82 * |
SP × ST | 5 | 2.5 | 26.23 *** | 1.09 | 2.08 |
B × SP × ST | 17 | 69.28 *** | 23.33 *** | 124.63 *** | 5.38 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paswan, R.; Mishra, A.; Park, Y.W. Survivability of Salmonella Pathogens and Physicochemical Characteristics of Powder Goat Milk Stored under Different Storage Treatment Regimens. Dairy 2020, 1, 269-283. https://doi.org/10.3390/dairy1030018
Paswan R, Mishra A, Park YW. Survivability of Salmonella Pathogens and Physicochemical Characteristics of Powder Goat Milk Stored under Different Storage Treatment Regimens. Dairy. 2020; 1(3):269-283. https://doi.org/10.3390/dairy1030018
Chicago/Turabian StylePaswan, Roshan, Abhinav Mishra, and Young W. Park. 2020. "Survivability of Salmonella Pathogens and Physicochemical Characteristics of Powder Goat Milk Stored under Different Storage Treatment Regimens" Dairy 1, no. 3: 269-283. https://doi.org/10.3390/dairy1030018
APA StylePaswan, R., Mishra, A., & Park, Y. W. (2020). Survivability of Salmonella Pathogens and Physicochemical Characteristics of Powder Goat Milk Stored under Different Storage Treatment Regimens. Dairy, 1(3), 269-283. https://doi.org/10.3390/dairy1030018