Compositional Characteristics of Mediterranean Buffalo Milk and Whey
Abstract
:1. Introduction
2. Buffalo Distribution in Italy
3. Basic Composition of Buffalo Milk
3.1. Carbohydrates
3.2. Lipids
3.2.1. Triacylglycerols
3.2.2. Fatty Acids
Role of Pastures on the Fatty Acid Profile of Buffalo Milk
3.3. Gangliosides
4. Milk Protein: Comparison between Different Breeds
5. Bioactive Milk Components
- Buffalo and cow αs1-CN (f 1–23) differs in two amino acid substitutions (E14 → G14 and H4 → P4). Cow αs1-CN (f 1–23) displayed antimicrobial activity [85]. Consequently, buffalo αs1-CN (f 1–23) may also show potential antibacterial activity, which should be confirmed experimentally.
- The αs2-CN C-terminal fragment (183–207) in cow milk showed antibacterial activity against Escherichia coli.
- The reaction between chymosin and both buffalo and cow κ-casein (κ-CN) produced the casein macropeptides (CMPs; f 106–169), which seem to enhance the growth and activity of Bifidobacteria. Further hydrolysis of cow CMP yields the antithrombotic peptide (f 116–127) [86].
- Cow α-lactalbumin (α-LA) has been reported to be a source for several bioactive peptides [89]. The similarity in the amino acid sequences of buffalo and cow α-LA suggests that buffalo α-LA may be a potential source of bioactive peptides similar to cow α-LA.
6. Vitamins
7. Minerals
8. Other Compounds of Interest
9. Potential Use of Milk and Dairy Products as Functional Foods
10. Whey
Pre-Probiotics
11. Infant Formula Milk Based on Buffalo Milk
12. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Warinner, C.; Hendy, J.; Speller, C.; Cappellini, E.; Fischer, R.; Trachsel, C.; Arneborg, J.; Lynnerup, N.; Craig, O.E.; Swallow, D.M.; et al. Direct evidence of milk consumption from ancient human dental calculus. Sci. Rep. 2014, 4, 7104. [Google Scholar] [CrossRef] [PubMed]
- Crabtree, P.J. Animal husbandry and farming in East Anglia from the 5th to the 10th centuries CE. Quat. Int. 2014, 346, 102–108. [Google Scholar] [CrossRef]
- Balthazar, C.F.; Pimentel, T.C.; Ferrão, L.L.; Almada, C.N.; Santillo, A.; Albenzio, M.; Mollakhalili, N.; Mortazavian, A.M.; Nascimento, J.S.; Silva, M.C.; et al. Sheep Milk: Physicochemical Characteristics and Relevance for Functional Food Development. Compr. Rev. Food Sci. Food Saf. 2017, 16, 247–262. [Google Scholar] [CrossRef] [PubMed]
- Colli, L.; Milanesi, M.; Vajana, E.; Iamartino, D.; Bomba, L.; Puglisi, F.; del Corvo, M.; Nicolazzi, E.L.; Ahmed, S.S.E.; Herrera, J.R.V.; et al. New insights on water buffalo genomic diversity and post-domestication migration routes from medium density SNP chip data. Front. Genet. 2018, 9, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wahid, H.; Rosnina, Y. Husbandry of dairy animals. Ann. Oncol. 2020, 7, 19–21. [Google Scholar]
- Zicarelli, L. Current trends in buffalo milk production. J. Buffalo Sci. 2020, 9, 121–132. [Google Scholar] [CrossRef]
- Zicari, G.; Carraro, E.; Bonetta, S. The Regulation (EC) N. 1924/2006 of the European Parliament and of the Council of 20 December 2006 on nutrition and health claims made on foods. Prog. Nutr. 2007, 9, 264–273. [Google Scholar]
- Burgain, J.; Gaiani, C.; Linder, M.; Scher, J. Encapsulation of probiotic living cells: From laboratory scale to industrial applications. J. Food Eng. 2011, 104, 467–483. [Google Scholar] [CrossRef]
- Bassi, M.A.; Lopez, M.A.; Confalone, L.; Gaudio, R.M.; Lombardo, L.; Lauritano, D. Enhanced Reader. Nature 2020, 388, 539–547. [Google Scholar]
- Allam, H.A.; Manal, B.M.; Fathi, A. A study for comparison between immune status of dairy Egyptain buffaloes and the crosses of Egyptain-Italian buffaloes under the Egyptian environment. J. Am. Sci. 2015, 11, 2584–2600. [Google Scholar]
- Martini, M.; Altomonte, I.; Sant’Ana, A.M.D.S.; Salari, F. Nutritional composition of four commercial cheeses made with buffalo milk. J. Food Nutr. Res. 2016, 55, 256–262. [Google Scholar]
- Verduci, E.; D’Elios, S.; Cerrato, L.; Comberiati, P.; Calvani, M.; Palazzo, S.; Martelli, A.; Landi, M.; Trikamjee, T.; Peroni, D.G. Cow’s Milk Substitutes for Children: Nutritional Special Formula and Plant-Based Beverages. Nutrients 2019, 11, 1739. [Google Scholar] [CrossRef] [Green Version]
- Barłowska, J.; Szwajkowska, Z.; Litwinczuk, M.; Kr´ol, J. Nutritional value and technological suitability of milk from various animal species used for dairy production. Compr. Rev. Food Sci. Food Saf. 2011, 10, 291–302. [Google Scholar] [CrossRef]
- Claeys, W.L.; Verraes, C.; Cardoen, S.; De Block, J.; Huyghebaert, A.; Raes, K.; Dewettinck, K.; Herman, L. Consumption of raw or heated milk from different species: An evaluation of the nutritional and potential health benefits. Food Control 2014, 42, 188–201. [Google Scholar] [CrossRef]
- Haenlein, G.F.W. Goat milk in human nutrition. Small Rumin. Res. 2004, 51, 155–163. [Google Scholar] [CrossRef]
- Arora, R.; Sharma, A.; Sharma, U.; Girdhar, Y.; Kaur, M.; Kapoor, P.; Ahlawat, S.; Vijh, R.K. Buffalo milk transcriptome: A comparative analysis of early, mid and late lactation. Sci. Rep. 2019, 9, 5993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campbell, R.T.; Marshall, J.R. The Science of Providing Milk for Man; McGraw-Hill Book Co.: New York, NY, USA, 1975. [Google Scholar]
- Larson, G.N.; Jorgensen, B.L. Biosynthesis of the milk proteins. In Lactation A Comprensive Treatise; Academic Press: Cambridge, CA, USA, 1974. [Google Scholar]
- Moore, E.R.; Lianyan, X.L.; Townsend, D.S. Prospecting Human Milk Oligosaccharides as a Defense Against Viral Infections. ACS Infect. Dis. 2021, 7, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Potočnik, K.; Gantner, V.; Kuterovac, K.; Cividini, A. Mare’s milk: Composition and protein fraction in comparison with different milk species. Mljekarstvo 2011, 61, 107–113. [Google Scholar]
- Urashima, T.; Saito, T.; Nakamura, T.; Messer, M. Oligosaccharides of milk and colostrum in non-human mammals. Glycoconj. J. 2001, 18, 357–371. [Google Scholar] [CrossRef] [PubMed]
- Austin, S.; De Castro, C.A.; Bénet, T.; Hou, Y.; Sun, H.; Thakkar, S.K.; Vinyes-Pares, G.; Zhang, Y.; Wang, P. Temporal change of the content of 10 oligosaccharides in the milk of chinese urban mothers. Nutrients 2016, 8, 346. [Google Scholar] [CrossRef] [Green Version]
- Musilova, S.; Rada, V.; Vlkova, E.; Bunesova, V. Beneficial effects of human milk oligosaccharides on gut microbiota. Benef. Microbes 2014, 5, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Walsh, C.; Lane, J.A.; van Sinderen, D.; Hickey, R.M. Human milk oligosaccharides: Shaping the infant gut microbiota and supporting health. J. Funct. Foods 2020, 72, 104074. [Google Scholar] [CrossRef] [PubMed]
- Malacarne, M.; Martuzzi, F.; Summer, A.; Mariani, P. Protein and fat composition of mare’s milk: Some nutritional remarks with reference to human and cow’s milk. Int. Dairy J. 2002, 12, 869–877. [Google Scholar] [CrossRef]
- Park, Y.W. Bioactive Components in Milk and Dairy Products; John Wiley & Sons: New York, NY, USA, 2009. [Google Scholar]
- Saksena, R.; Deepak, D.; Khare, A.; Sahai, R.; Tripathi, L.M.; Srivastava, V.M.L. A novel pentasaccharide from immunostimulant oligosaccharide fraction of buffalo milk. Biochim. Biophys. Acta-Gen. Subj. 1999, 1428, 433–445. [Google Scholar] [CrossRef]
- Amores, G.; Virto, M. Total and free fatty acids analysis in milk and dairy fat. Separations 2019, 6, 14. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Alcalá, L.M.; Castro-Gómez, M.P.; Pimentel, L.L.; Fontecha, J. Milk fat components with potential anticancer activity—A review. Biosci. Rep. 2017, 37, BSR20170705. [Google Scholar] [CrossRef] [Green Version]
- Jensen, R.G.; Ferris, A.M.; Lammi-Keefe, C.J.; Henderson, R.A. Lipids of Bovine and Human Milks: A Comparison. J. Dairy Sci. 1990, 73, 223–240. [Google Scholar] [CrossRef]
- Park, Y.W.; Iudrez, M.; Ramos, M.; Haenlein, G.F.W. Physico-chemic al characteristics of goat and sheep milk. Small Rumin. Res. 2007, 68, 88–113. [Google Scholar] [CrossRef] [Green Version]
- Uniacke-Lowe, T. Studies on Equine Milk and Comparative Studies on Equine and Bovine Milk Systems. Ph.D. Thesis, University College Cork, Cork, Ireland, 2011. [Google Scholar]
- Berra, B.; Colombo, I.; Sottocornola, E.; Giacosa, A. Dietary sphingolipids in colorectal cancer prevention. Eur. J. Cancer Prev. 2002, 11, 193–197. [Google Scholar] [CrossRef]
- Pagliarini, E.; Solaroli, G.; Peri, C. Chemical and physical characteristics of mare’s milk. Ital. J. Food Sci. 1993, 5, 323–332. [Google Scholar]
- German, J.B.; Dillard, C.J. Composition, structure and absorption of milk lipids: A source of energy, fat-soluble nutrients and bioactive molecules. Crit. Rev. Food Sci. Nutr. 2006, 46, 57–92. [Google Scholar] [CrossRef]
- Winter, C.H.; Hoving, E.B.; Muskiet, F.A.J. Fatty acid composition of human milk triglyceride species. Possible consequences for optimal structures of infant formula triglycerides. J. Chromatogr. B Biomed. Sci. Appl. 1993, 616, 9–24. [Google Scholar] [CrossRef]
- Parodi, P.W. Positional distribution of fatty acids in triglycerides from milk of several species of mammals. Lipids 1982, 17, 437–442. [Google Scholar] [CrossRef]
- Gastaldi, D.; Bertino, E.; Monti, G.; Baro, C.; Fabris, C.; Lezo, A.; Medana, C.; Baiocchi, C.; Mussap, M.; Galvano, F.; et al. Donkey’s milk detailed lipid composition. Front. Biosci. 2010, 2, 537–546. [Google Scholar]
- Pegolo, S.; Stocco, G.; Mele, M.; Schiavon, S.; Bittante, G.; Cecchinato, A. Factors affecting variations in the detailed fatty acid profile of Mediterranean buffalo milk determined by 2-dimensional gas chromatography. J. Dairy Sci. 2017, 100, 2564–2576. [Google Scholar] [CrossRef] [Green Version]
- Blasi, F.; Montesano, D.; De Angelis, M.; Maurizi, A.; Ventura, F.; Cossignani, L.; Simonetti, M.S.; Damiani, P. Results of stereospecific analysis of triacylglycerol fraction from donkey, cow, ewe, goat and buffalo milk. J. Food Compos. Anal. 2008, 21, 1–7. [Google Scholar] [CrossRef]
- Ménard, O.; Ahmad, S.; Rousseau, F.; Briard-Bion, V.; Gaucheron, F.; Lopez, C. Buffalo vs. cow milk fat globules: Size distribution, zeta-potential, compositions in total fatty acids and in polar lipids from the milk fat globule membrane. Food Chem. 2010, 120, 544–551. [Google Scholar] [CrossRef]
- Medhammar, E.; Wijesinha-Bettoni, R.; Stadlmayr, B.; Nilsson, E.; Charrondiere, U.R.; Burlingame, B. Composition of milk from minor dairy animals and buffalo breeds: A biodiversity perspective. J. Sci. Food Agric. 2012, 92, 445–474. [Google Scholar] [CrossRef]
- Christie, W.W.; Noble, R.C.; Davies, G. Phospholipids in milk and dairy products. Int. J. Dairy Technol. 1987, 40, 10–12. [Google Scholar] [CrossRef]
- Conte, G.; Serra, A.; Cremonesi, P.; Chessa, S.; Castiglioni, B.; Cappucci, A.; Bulleri, E.; Mele, M. Investigating mutual relationship among milk fatty acids by multivariate factor analysis in dairy cows. Livest. Sci. 2016, 188, 124–132. [Google Scholar] [CrossRef]
- Talpur, F.N.; Bhanger, M.I.; Sherazi, S.T.H. Intramuscular fatty acid profile of longissimus dorsi and semitendinosus muscle from Pateri goats fed under traditional feeding system of Sindh, Pakistan. Meat Sci. 2008, 80, 819–822. [Google Scholar] [CrossRef]
- Kay, J.K.; Mackle, T.R.; Auldist, M.J.; Thomson, N.A.; Bauman, D.E. Endogenous synthesis of cis-9, trans-11 conjugated linoleic acid in dairy cows fed fresh pasture. J. Dairy Sci. 2004, 87, 369–378. [Google Scholar] [CrossRef] [Green Version]
- FDA. US Food and Drug Administration Reports; Federal Register: College Park, MD, USA, 2015.
- de Souza, R.J.; Mente, A.; Maroleanu, A.; Cozma, A.I.; Ha, V.; Kishibe, T.; Uleryk, E.; Budylowski, P.; Schünemann, H.; Beyene, J.; et al. Intake of saturated and trans unsaturated fatty acids and risk of all cause mortality, cardiovascular disease, and type 2 diabetes: Systematic review and meta-analysis of observational studies. BMJ 2015, 351, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Jacome-Sosa, M.M.; Vine, D.F.; Proctor, S.D. Beneficial effects of vaccenic acid on postprandial lipid metabolism and dyslipidemia: Impact of natural trans-fats to improve CVD risk. Lipid Technol. 2010, 22, 103–106. [Google Scholar] [CrossRef]
- Palmquist, D.L. Milk fat: Origin of fatty acids and influence of nutritional factors thereon. Adv. Dairy Chem. 2009, 2, 43–92. [Google Scholar]
- Tudisco, R.; Cutrignelli, M.I.; Calabro, S.; Grossi, M.; Musco, N.; Monastra, G.; Infascelli, F. Milk CLA content and Δ9-desaturase activity in buffalo cows along the lactation. Buffalo Bull. 2013, 32, 1330–1333. [Google Scholar]
- Soyeurt, H.; Dehareng, F.; Mayeres, P.; Bertozzi, C.; Gengler, N. Variation of Δ9-desaturase activity in dairy cattle. J. Dairy Sci. 2008, 91, 3211–3224. [Google Scholar] [CrossRef] [Green Version]
- Catillo, G.; Macciotta, N.P.P.; Carretta, A.; Cappio-Borlino, A. Effects of age and calving season on lactation curves of milk production traits in Italian water buffaloes. J. Dairy Sci. 2002, 85, 1298–1306. [Google Scholar] [CrossRef]
- Verdurico, L.C.; Gandra, J.R.; de Freitas Júnior, J.E.; Barletta, R.V.; Venturelli, B.C.; Mingoti, R.D.; Vendramini, T.H.A.; Rennó, F.P. Evaluation of the Milk Fatty Acid Profile from Mediterranean Buffalo Cows in the First Eight Weeks of Lactation. J. Buffalo Sci. 2012, 1, 177–182. [Google Scholar]
- Varricchio, M.L.; di Francia, A.; Masucci, F.; Romano, R.; Proto, V. Fatty acid composition of Mediterranean buffalo milk fat. Ital. J. Anim. Sci. 2007, 6 (Suppl. 1), 509–511. [Google Scholar] [CrossRef]
- Bergamo, P.; Fedele, E.; Iannibelli, L.; Marzillo, G. Fat-soluble vitamin contents and fatty acid composition in organic and conventional Italian dairy products. Food Chem. 2003, 82, 625–631. [Google Scholar] [CrossRef]
- Pepeu, G.; Pepeu, I.M.; Amaducci, L. A review of phosphatidylserine pharmacological and clinical effects. Is phosphatidylserine a drug for the ageing brain? Pharmacol. Res. 1996, 33, 73–80. [Google Scholar] [CrossRef] [PubMed]
- McDaniel, M.A.; Maier, S.F.; Einstein, G.O. ‘Brain-specific’ nutrients: A memory cure? Nutrition 2003, 19, 957–975. [Google Scholar] [CrossRef]
- Kidd, P. Phospholipids: Versatile nutraceuticals for functional foods. Funct. Ingred. 2002, 12, 30–40. [Google Scholar]
- Blusztajn, J.K. Choline, a vital amine. Science 1998, 281, 794–795. [Google Scholar] [CrossRef]
- Spitsberg, V.L. Invited review: Bovine milk fat globule membrane as a potential nutraceutical. J. Dairy Sci. 2005, 88, 2289–2294. [Google Scholar] [CrossRef]
- Bonfatti, V.; Gervaso, M.; Rostellato, R.; Coletta, A.; Carnier, P. Protein composition affects variation in coagulation properties of buffalo milk. J. Dairy Sci. 2013, 96, 4182–4190. [Google Scholar] [CrossRef] [Green Version]
- Ferranti, P.; Scaloni, A.; Caira, S.; Chianese, L.; Malorni, A.; Addeo, F. The primary structure of water buffalo α(s1)- and β-casein: Identification of phosphorylation sites and characterization of a novel β-casein variant. J. Protein Chem. 1998, 17, 835–844. [Google Scholar] [CrossRef]
- Caroli, A.M.; Chessa, S.; Erhardt, G.J. Invited review: Milk protein polymorphisms in cattle: Effect on animal breeding and human nutrition. J. Dairy Sci. 2009, 92, 5335–5352. [Google Scholar] [CrossRef] [Green Version]
- Patel, R.K.; Chauhan, J.B.; Singh, K.M.; Soni, K.J. Genotype and allele frequencies of κ casein and β lac toglobulin in Indian river buffalo bulls (Bubalus bubalis). Buffalo Bull. 2007, 26, 63–66. [Google Scholar]
- Feligini, M.; Bonizzi, I.; Buffoni, J.N.; Cosenza, G.; Ramunno, L. Identification and quantification of αs1, αS2, β, and κ-caseins in water buffalo milk by reverse phase-high performance liquid chromatography and mass spectrometry. J. Agric. Food Chem. 2009, 57, 2988–2992. [Google Scholar] [CrossRef] [PubMed]
- Bonfatti, V.; Grigoletto, L.; Cecchinato, A.; Gallo, L.; Carnier, P. Validation of a new reversed-phase high-performance liquid chromatography method for separation and quantification of bovine milk protein genetic variants. J. Chromatogr. A 2008, 1195, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Rafiq, S.; Huma, N.; Pasha, I.; Sameen, A.; Mukhtar, O.; Khan, M.I. Chemical composition, nitrogen fractions and amino acids profile of milk from different animal species. Asian-Australas. J. Anim. Sci. 2016, 29, 1022–1028. [Google Scholar] [CrossRef] [PubMed]
- Motoki, N.; Mizuki, M.; Tsukahara, T.; Miyakawa, M.; Kubo, S.; Oda, H.; Tanaka, M.; Yamauchi, K.; Abe, F.; Nomiyama, T.; et al. Effects of Lactoferrin-Fortified Formula on Acute Gastrointestinal Symptoms in Children Aged 12–32 Months: A Randomized, Double-Blind, Placebo-Controlled Trial. Front. Pediatr. 2020, 8, 233. [Google Scholar] [CrossRef] [PubMed]
- Burdette, J.H.; Santos, C. Enterobacter sakazakii brain abscess in the neonate: The importance of neuroradiologic imaging. Pediatr. Radiol. 2000, 30, 33–34. [Google Scholar] [CrossRef]
- Simmons, B.P.; Gelfand, M.S.; Haas, M.; Metts, L.; Ferguson, J. Enterobacter sakazakii Infections in Neonates Associated with Intrinsic Contamination of a Powdered Infant Formula. Infect. Control Hosp. Epidemiol. 1989, 10, 398–401. [Google Scholar] [CrossRef]
- Noriega, F.R.; Kotloff, K.L.; Martin, M.A.; Schwalbe, R.S. Nosocomial bacteremia caused by Enterobacter sakazakiki and Leuconostoc mesenteroides resulting from extrinsic contamination of infant formula. Pediatr. Infect. Dis. J. 1990, 9, 447–449. [Google Scholar]
- van Acker, J.; de Smet, F.; Muyldermans, G.; Bougatef, A.; Naessens, A.; Lauwers, S. Outbreak of necrotizing enterocolitis associated with Enterobacter sakazakii in powdered milk formula. J. Clin. Microbiol. 2001, 39, 293–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, K.K. Enterobacter sakazakii infections among neonates, infants, children, and adults: Case reports and a review of the literature. Medicine 2001, 80, 113–122. [Google Scholar] [CrossRef]
- Lehner, A.; Stephan, R. Microbiological, Epidemiological, and Food Safety Aspects of Enterobacter sakazakii. J. Food Prot. 2004, 67, 2850–2857. [Google Scholar] [CrossRef]
- Kim, H.; Beuchat, L.R. Survival and growth of Enterobacter sakazakii on fresh-cut fruits and vegetables and in unpasteurized juices as affected by storage temperature. J. Food Prot. 2005, 68, 2541–2552. [Google Scholar] [CrossRef]
- Nazarowee-White, M.; Farber, J.M. Thermal resistance of Enterobacter sakazakii in reconstituted dried-infant formula. Lett. Appl. Microbiol. 1997, 24, 9–13. [Google Scholar] [CrossRef]
- Nazarowec-White, M.; Farber, J.M. Enterobacter sakazakii: A review. Int. J. Food Microbiol. 1997, 34, 103–113. [Google Scholar] [CrossRef]
- Barron, J.C.; Forsythe, S.J. Dry stress and survival time of Enterobacter sakazakii and other Enterobacteriaceae in dehydrated powdered infant formula. J. Food Prot. 2007, 70, 2111–2117. [Google Scholar] [CrossRef] [PubMed]
- Edelson-Mammel, S.G.; Porteous, M.K.; Buchanan, R.L. Survival of Enterobacter sakazakii in a dehydrated powdered infant formula. J. Food Prot. 2005, 68, 1900–1902. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, R.J.; Murray, B.A. Bioactive peptides and lactic fermentations. Int. J. Dairy Technol. 2006, 59, 118–125. [Google Scholar] [CrossRef]
- Recio, I.; de la Fuente, A.; Ju´arez, M.; Ramos, M. Bioactive compounds in sheep milk. In Bioactive Compounds in Milk and Dairy Products; Park, Y.W., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2009; Chapter 4; Volume 1. [Google Scholar]
- Meisel, H. Multifunctional peptides encrypted in milk proteins. BioFactors 2004, 21, 55–61. [Google Scholar] [CrossRef]
- El-Salam, M.H.A.; El-Shibiny, S. Bioactive Peptides of Buffalo, Camel, Goat, Sheep, Mare, and Yak Milks and Milk Products. Food Rev. Int. 2013, 29, 1–23. [Google Scholar] [CrossRef]
- de Simone, C.; Ferranti, P.; Picariello, G.; Scognamiglio, I.; Dicitore, A.; Addeo, F.; Chianese, L.; Stiuso, P. Peptides from water buffalo cheese whey induced senescence cell death via ceramide secretion in human colon adenocarcinoma cell line. Mol. Nutr. Food Res. 2011, 55, 229–238. [Google Scholar] [CrossRef]
- Petrilli, P.; Pucci, P.; Pelissier, J.P.; Addeo, F. Digestion by pancreatic juice of a beta-casomorphin-containing fragment of buffalo beta-casein. Int. J. Pept. Protein Res. 1987, 29, 504–508. [Google Scholar] [CrossRef]
- D’Ambrosio, C.; Arena, S.; Salzano, A.M.; Renzone, G.; Ledda, L.; Scaloni, A. A proteomic characterization of water buffalo milk fractions describing PTM of major species and the identification of minor components involved in nutrient delivery and defense against pathogens. Proteomics 2008, 8, 3657–3666. [Google Scholar] [CrossRef]
- Madureira, A.R.; Pereira, C.I.; Gomes, A.M.P.; Pintado, M.E.; Xavier, F. Malcata Bovine whey proteins—Overview on their main biological properties. Food Res. Int. 2007, 40, 1197–1211. [Google Scholar] [CrossRef]
- Kamau, S.M.; Cheison, S.C.; Chen, W.; Liu, X.M.; Lu, R.R. Alpha-lactalbumin: Its production technologies and bioactive peptides. Compr. Rev. Food Sci. Food Saf. 2010, 9, 197–212. [Google Scholar] [CrossRef]
- Minervini, F.; Algaron, F.; Rizzello, C.G.; Fox, P.F.; Monnet, V.; Gobbetti, M. Angiotensin I-converting-enzyme-inhibitory and antibacterial peptides from Lactobacillus helveticus PR4 proteinase-hydrolyzed caseins of milk from six species. Appl. Environ. Microbiol. 2003, 69, 5297–5305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panfili, G.; Manzi, P.; Pizzoferrato, L. High-performance liquid chromatographic method for the simultaneous determination of tocopherols, carotenes, and retinol and its geometric isomers in Italian cheeses. Analyst 1994, 119, 1161–1165. [Google Scholar] [CrossRef]
- Donnelly, J.K.; Robinson, D.S. Invited review free radicals in foods. Free Radic. Res. 1995, 22, 147–176. [Google Scholar] [CrossRef]
- Raynal-Ljutovac, K.; Lagriffoul, G.; Paccard, P.; Guillet, I.; Chilliard, Y. Composition of goat and sheep milk products: An update. Small Rumin. Res. 2008, 79, 57–72. [Google Scholar] [CrossRef]
- Ullah, R.; Khan, S.; Ali, H.; Bilal, M.; Saleem, M.; Mahmood, A.; Ahmed, M. Raman-spectroscopy-based differentiation between cow and buffalomilk. J. Raman Spectrosc. 2017, 48, 692–696. [Google Scholar] [CrossRef]
- Arnhold, T.; Nau, H.; Meyer, S.; Rothkoetter, H.J.; Lampen, A.D. Porcine intestinal metabolism of excess vitamin A differs following vitamin A supplementation and liver consumption. J. Nutr. 2002, 132, 197–203. [Google Scholar] [CrossRef]
- Rodriguez, M.A.P.; Petrini, J.; Ferreira, E.M.; Mourão, L.R.M.B.; Salvian, M.; Cassoli, L.D.; Pires, A.V.; Machado, P.F.; Mourão, G.B. Concordance analysis between estimation methods of milk fatty acid content. Food Chem. 2014, 156, 170–175. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, J.; Darcel, N.; Fromentin, G.; Tome, D. Protein, amino acids, vagus nerve signaling, and the brain 1–4. Am. J. Clin. Nutr. 2009, 90, 838–843. [Google Scholar]
- Politis, I. Reevaluation of vitamin e supplementation of dairy cows: Bioavailability, animal health and milk quality. Animal 2012, 6, 1427–1434. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Hosseinian, F.S.; Tsopmo, A.; Friel, J.K.; Beta, T. Evaluation of antioxidant capacity and aroma quality of breast milk. Nutrition 2009, 25, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Moltó-Puigmartí, C.; Castellote, A.I.; López-Sabater, M.C. Ultra-High-Pressure Liquid Chromatographic method for the analysis of tocopherols in human colostrum and milk. J. Chromatogr. A 2009, 1216, 4388–4394. [Google Scholar] [CrossRef] [PubMed]
- van Aardt, M.; Duncan, S.E.; Marcy, J.E.; Long, T.E.; O’Keefe, S.F.; Nielsen-Sims, S.R. Aroma analysis of light-exposed milk stored with and without natural and synthetic antioxidants. J. Dairy Sci. 2005, 88, 881–890. [Google Scholar] [CrossRef] [Green Version]
- Abbas, G.; Muhammad, N.; Abdullah, M. Effect of vitamin E on storage stability of sour cream butter made from sheep milk. Carpathian J. Food Sci. Technol. 2011, 3, 21–25. [Google Scholar]
- Geissler, C.; Powers, H. Human Nutrition, 12th ed.; Oxford University Press: Oxford, UK, 2010. [Google Scholar]
- Sretenovic, L.; Aleksic, S.; Petrovic, M.P.; Miscevic, B. Nutritional factors influencing improvement of milk and meat quality as well as productive and reproductive parameters of cattle. Biotechnol. Anim. Husb. 2007, 23, 217–226. [Google Scholar] [CrossRef]
- Fuquay, W.J.; McSweeney, P.; Fox, P. Encyclopedia of Dairy Sciences; Academic Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Anderson, R.R. Comparison of trace Elements in Milk of Four Species. Dairy Sci. 1992, 75, 3050–3055. [Google Scholar] [CrossRef]
- Cashman, K.D. Trace Elements in Milk and Dairy Products, Nutritional Significance; Academic Press: London, UK, 2002. [Google Scholar]
- Denke, M.A.; Fox, M.M.; Schulte, M.C. Short-Term Dietary Calcium Fortification Increases Fecal Saturated Fat Content and Reduces Serum Lipids in Men. J. Nutr. 1993, 123, 1047–1053. [Google Scholar]
- Welberg, J.W.M.; Monkelbaan, J.F.; De Vries, E.G.E.; Muskiet, F.A.J.; Cats, A.; Oremus, E.T.H.; Boersma-van Ek, W.; Van Rijsbergen, H.; Van der Meer, R.; Mulder, N.H.; et al. Effects of supplemental dietary calcium on quantitative and qualitative fecal fat excretion in man. Ann. Nutr. Metab. 1994, 38, 185–191. [Google Scholar] [CrossRef]
- Papakonstantinou, E.; Flatt, W.P.; Huth, P.J.; Harris, R.B.S. High dietary calcium reduces body fat content, digestibility of fat, and serum vitamin D in rats. Obes. Res. 2003, 11, 387–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobsen, R.; Lorenzen, J.K.; Toubro, S.; Krog-Mikkelsen, I.; Astrup, A. Effect of short-term high dietary calcium intake on 24-h energy expenditure, fat oxidation, and fecal fat excretion. Int. J. Obes. 2005, 29, 292–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Black, R.E.; Williams, S.M.; Jones, L.E.; Goulding, A. Children who avoid drinking cow milk have low dietary calcium intakes and poor bone health. Am. J. Clin. Nutr. 2002, 76, 675–680. [Google Scholar] [CrossRef]
- Barba, G.; Troiano, E.; Russo, P.; Venezia, A.; Siani, A. Inverse association between body mass and frequency of milk consumption in children. Br. J. Nutr. 2005, 93, 15–19. [Google Scholar] [CrossRef] [Green Version]
- Zemel, M.B.; Thompson, W.; Milstead, A.; Morris, K.; Campbell, P. Calcium and dairy acceleration of weight and fat loss during energy restriction in obese adults. Obes. Res. 2004, 12, 582–590. [Google Scholar] [CrossRef] [PubMed]
- D’Onofrio, N.; Balestrieri, A.; Neglia, G.; Monaco, A.; Tatullo, M.; Casale, R.; Limone, A.; Balestrieri, M.L.; Campanile, G. Antioxidant and Anti-Inflammatory Activities of Buffalo Milk Î-Valerobetaine. J. Agric. Food Chem. 2019, 67, 1702–1710. [Google Scholar] [CrossRef] [PubMed]
- El-Salam, M.H.A.; El-Shibiny, S. A comprehensive review on the composition and properties of buffalo milk. Dairy Sci. Technol. 2011, 91, 663–699. [Google Scholar] [CrossRef]
- Turfan, M.; Duran, M.; Poyraz, F.; Yayla, C.; Akboga, M.K.; Sahinarslan, A.; Yusuf, T.; Hatice, P.; Boyaci, B. Inverse relationship between serum total bilirubin levels and severity of disease in patients with stable coronary artery disease. Coron. Artery Dis. 2013, 24, 29–32. [Google Scholar] [CrossRef] [PubMed]
- da Silva, T.M.S.; Piazentin, A.C.M.; Mendonça, C.M.N.; Converti, A.; Bogsan, C.S.B.; Mora, D.; de Souza Oliveira, R.P. Buffalo milk increases viability and resistance of probiotic bacteria in dairy beverages under in vitro simulated gastrointestinal conditions. J. Dairy Sci. 2020, 103, 7890–7897. [Google Scholar] [CrossRef] [PubMed]
- Tong, L.M.; Sasaki, S.; McClements, D.J.; Decker, E.A. Antioxidant activity of whey in a salmon oil emulsion. J. Food Sci. 2000, 65, 1325–1329. [Google Scholar] [CrossRef]
- McCarthy, T.L.; Kerry, J.P.; Kerry, J.F.; Lynch, P.B.; Buckley, D.J. Evaluation of the antioxidant potential of natural food/plant extracts as compared with synthetic antioxidants and vitamin e in raw and cooked pork patties. Meat Sci. 2001, 58, 45–52. [Google Scholar] [CrossRef]
- Erel, O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin. Biochem. 2004, 37, 277–285. [Google Scholar] [CrossRef]
- Khan, I.T.; Nadeem, M.; Imran, M.; Ullah, R.; Ajmal, M.; Jaspal, M.H. Antioxidant properties of Milk and dairy products: A comprehensive review of the current knowledge. Lipids Health Dis. 2019, 18, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Lindmark-Månsson, H.; Åkesson, B. Optimisation of a coupled enzymatic assay of glutathione peroxidase activity in bovine milk and whey. Int. Dairy J. 2000, 10, 347–351. [Google Scholar] [CrossRef]
- Choe, E.; Min, D.B. Mechanisms of Antioxidants in the Oxidation of Foods. Compr. Rev. Food Sci. Food Saf. 2009, 8, 345–358. [Google Scholar] [CrossRef]
- Mohammadi, R.; Mortazavian, A.M. Review article: Technological aspects of prebiotics in probiotic fermented milks. Food Rev. Int. 2011, 27, 192–212. [Google Scholar] [CrossRef]
- Patel, S.; Goyal, A. Functional oligosaccharides: Production, properties and applications. World J. Microbiol. Biotechnol. 2011, 27, 1119–1128. [Google Scholar] [CrossRef]
- Charalampopoulos, D.; Rastall, R.A. Prebiotics in foods. Curr. Opin. Biotechnol. 2012, 23, 187–191. [Google Scholar] [CrossRef]
- Nagpal, R.; Behare, P.V.; Kumar, M.; Mohania, D.; Yadav, M.; Jain, S.; Menon, S.; Parkash, O.; Marotta, F.; Minelli, E.; et al. Milk, Milk Products, and Disease Free Health: An Updated Overview. Crit. Rev. Food Sci. Nutr. 2012, 52, 321–333. [Google Scholar] [CrossRef]
- Al-Sheraji, S.H.; Ismail, A.; Manap, M.Y.; Mustafa, S.; Yusof, R.M.; Hassan, F.A. Prebiotics as functional foods: A review. J. Funct. Foods 2013, 5, 1542–1553. [Google Scholar] [CrossRef]
- Greenbaum, A.; Aryana, K.J. Effect of Honey a Natural Sweetener with Several Medicinal Properties on the Attributes of a Frozen Dessert Containing the Probiotic Lactobacillus acidophilus. Open J. Med. Microbiol. 2013, 3, 95–99. [Google Scholar] [CrossRef] [Green Version]
- Martinez, F.A.C.; Balciunas, E.M.; Converti, A.; Cotter, P.D.; de Souza Oliveira, R.P. Bacteriocin production by Bifidobacterium spp. A review. Biotechnol. Adv. 2013, 31, 482–488. [Google Scholar] [CrossRef] [PubMed]
- Protonotariou, S.V.; Karali, E.; Evageliou, V.; Yanniotis, S.; Mandala, I. Rheological and sensory attributes of cream caramel desserts containing fructooligosaccharides as substitute sweeteners. Int. J. Food Sci. Technol. 2013, 48, 663–669. [Google Scholar] [CrossRef]
- Saad, N.; Delattre, C.; Urdaci, M.; Schmitter, J.M.; Bressollier, P. An overview of the last advances in probiotic and prebiotic field. LWT–Food Sci. Technol. 2013, 50, 1–16. [Google Scholar] [CrossRef]
- Shafakatullah, N.; Chandra, M. Screening of Raw Buffalo’s Milk from Karnataka for Potential Probiotic Strains. Res. J. Recent Sci. Res.J. Recent Sci. 2014, 3, 73–78. [Google Scholar]
- Kalhoro, M.S.; Nguyen, L.T.; Anal, A.K. Evaluation of probiotic potentials of the Lactic Acid Bacteria (LAB) isolated from Raw Buffalo (Bubalus bubalis) milk. Pak. Vet. J. 2019, 39, 395–400. [Google Scholar] [CrossRef]
- Cencic, A.; Chingwaru, W. The role of functional foods, nutraceuticals, and food supplements in intestinal health. Nutrients 2010, 2, 611–625. [Google Scholar] [CrossRef]
- Gourbeyre, P.; Denery, S.; Bodinier, M. Probiotics, prebiotics, and synbiotics: Impact on the gut immune system and allergic reactions. J. Leukoc. Biol. 2011, 89, 685–695. [Google Scholar] [CrossRef]
- Gharsallaoui, A.; Roudaut, G.; Chambin, O.; Voilley, A.; Saurel, R. Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Res. Int. 2007, 40, 1107–1121. [Google Scholar] [CrossRef]
- Alves, M.F.; Borges, M.V.; Filho, D.F.; Chaves, M.A.; Lanna, D.P.; dos Santos Pedreira, M.; Ferrão, S.P.B.; de Albuquerque Fernandes, S.A. Effect of spray drying on the fatty acids content and nutritional indices of buffalo powdered milk. Food Sci. Technol. 2020, 40, 230–237. [Google Scholar] [CrossRef] [Green Version]
Human | Horse | Donkey | Cow | Sheep | Goat | Buffalo | |
---|---|---|---|---|---|---|---|
Total dry matter (g/L) | 107–129 | 93–116 | 88–117 | 118–130 | 181–200 | 119–163 | 157–172 |
Proteins (g/L) | 9–19 | 14–32 | 14–20 | 30–39 | 45–70 | 30–52 | 22–47 |
Casein/whey ratio | 0.4–0.5 | 1.1 | 1.28 | 4.7 | 3.1 | 3.5 | 4.6 |
Fat (g/L) | 21–40 | 3–42 | 3–18 | 33–54 | 50–90 | 30–72 | 53–90 |
Lactose (g/L) | 63–70 | 56–72 | 58–74 | 44–56 | 41–59 | 32–50 | 32–49 |
Ash (g/L) | 2–3 | 3–5 | 3–5 | 7–8 | 8–10 | 7–9 | 8–9 |
Energy (kJ/L) | 2843 | 1936–2050 | 1607–1803 | 2709–2843 | 4038–4439 | 2802–2894 | 4244–4479 |
Lipid Class | Cow | Sheep | Goat | Buffalo |
---|---|---|---|---|
Triacylglycerol | 97.5 | 98.1 | 97.3 | 98.6 |
Diacylglycerol | 0.36 | N.M. | N.M. | 0.7 |
Monoacylglycerol | 0.027 | 0.03 | 0.10 | Trace |
Cholesteryl esters | Trace | 0.02 | 0.04 | 0.1 |
Cholesterol | 0.31 | N.M. | N.M. | 0.3 |
Free fatty acids | 0.027 | N.M. | N.M. | 0.5 |
Phospholipids | 0.6 | 0.38 | 0.65 | 0.5 |
Trait | Buffalo (Mean ± SD) | Cow (Mean ± SD) |
---|---|---|
SFA | 70.49 ± 5.14 | 69.61 ± 4.10 |
MUFA | 25.95 ± 4.76 | 24.28 ± 3.45 |
PUFA | 3.54 ± 0.65 | 3.79 ± 0.79 |
SCFA | 9.72 ± 1.82 | 10.53 ± 1.71 |
MCFA | 53.70 ± 5.44 | 52.78 ± 5.26 |
LCFA | 32.73 ± 6.59 | 34.40 ± 5.14 |
n-6 PUFA | 1.77 ± 0.54 | 2.31 ± 0.65 |
n-3 PUFA | 0.46 ± 0.09 | 0.69 ± 0.20 |
Trans fatty acids | 2.66 ± 0.72 | 2.22 ± 0.53 |
Trait | Organic | Conventional |
---|---|---|
Fat (%) | 8.0 ± 0.5 | 7.9 ± 0.7 |
Fatty acids (mg/g of fat) | ||
C14:0 | 117 ± 3.5 | 120 ± 6.5 |
C16:0 | 344 ± 7.8 | 357 ± 8.9 |
C16:1 | 21.6 ± 1.0 | 19.5 ± 0.8 |
C18:0 | 126 ± 1.5 | 130 ± 2.6 |
C18:1 | 217 ± 2.2 | 233 ± 3.5 |
TVA | 26.2 ± 1.8 | 13.3 ± 0.9 |
LA | 18.0 ± 0.9 | 24.2 ± 1.4 |
CLA | 7.3 ± 0.8 | 5.5 ± 0.5 |
LNA | 4.6 ± 0.1 | 3.5 ± 0.2 |
Parameter (g/L) | Cow | Buffalo | Sheep | Goat |
---|---|---|---|---|
TPC | 25–28 | 32–40 | 42–46 | 23–47 |
αS1-casei | 8–11 | 9 | 15–22 | 0–13 |
αS2-casein | 3–4 | 5 | 0 | 2–12 |
β-casein | 8–9 | 12–21 | 15–18 | 0–30 |
κ-casein | 2–3 | 4–6 | 3–5 | 2–13 |
Parameter (%) | Cow | Buffalo | Sheep | Goat |
---|---|---|---|---|
Crude protein | 3.57 ± 0.03 | 4.25 ± 0.07 | 5.15 ± 0.06 | 3.35 ± 0.02 |
True protein | 3.25 ± 0.03 | 3.87 ± 0.02 | 4.53 ± 0.03 | 2.95 ± 0.02 |
Casein | 2.79 ± 0.02 | 3.20 ± 0.03 | 3.87 ± 0.04 | 2.44 ± 0.03 |
Whey protein | 0.47 ± 0.01 | 0.68 ± 0.02 | 0.66 ± 0.02 | 0.53 ± 0.02 |
Non-casein nitrogen | 0.77 ± 0.02 | 1.05 ± 0.02 | 1.28 ± 0.03 | 0.94 ± 0.01 |
Non-protein nitrogen | 0.33 ± 0.03 | 0.38 ± 0.02 | 0.62 ± 0.02 | 0.39 ± 0.01 |
Vitamin | Cow | Buffalo |
---|---|---|
Vitamin A (IU/mL) | 230 | 340 |
Thiamine (µg/mL) | 0.2 | 0.2–0.5 |
Riboflavin (µg/mL) | 2.33 | 1.59 |
Pyridoxine (µg/mL) | 2.6–3.0 | 3.25 |
Ascorbic acid (mg/100 g) | 1.94 | 2.2 |
Tocopherol (µg/g) | 312 | 334 |
Element (mg/100 mL) | Cow | Buffalo |
---|---|---|
Calcium | 123 | 184 |
Magnesium | 12 | 19 |
Sodium | 58 | 45 |
Potassium | 141 | 102 |
Phosphate | 95 | 89 |
Citrate | 160 | 178 |
Chloride | 119 | 64 |
Boron | 0.027 | 0.052–0.145 |
Cobalt | 0.0006 | 0.00069–0.00161 |
Copper | 0.013 | 0.007–0.021 |
Iron | 0.045 | 0.042–0.152 |
Manganese | 0.022 | 0.0382–0.0658 |
Sulphur | 30 | 15.7–31.4 |
Zinc | 0.390 | 0.147–0.728 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garau, V.; Manis, C.; Scano, P.; Caboni, P. Compositional Characteristics of Mediterranean Buffalo Milk and Whey. Dairy 2021, 2, 469-488. https://doi.org/10.3390/dairy2030038
Garau V, Manis C, Scano P, Caboni P. Compositional Characteristics of Mediterranean Buffalo Milk and Whey. Dairy. 2021; 2(3):469-488. https://doi.org/10.3390/dairy2030038
Chicago/Turabian StyleGarau, Viviana, Cristina Manis, Paola Scano, and Pierluigi Caboni. 2021. "Compositional Characteristics of Mediterranean Buffalo Milk and Whey" Dairy 2, no. 3: 469-488. https://doi.org/10.3390/dairy2030038
APA StyleGarau, V., Manis, C., Scano, P., & Caboni, P. (2021). Compositional Characteristics of Mediterranean Buffalo Milk and Whey. Dairy, 2(3), 469-488. https://doi.org/10.3390/dairy2030038