Contribution of Precision Livestock Farming Systems to the Improvement of Welfare Status and Productivity of Dairy Animals
Abstract
:1. Introduction
2. Human–Dairy Animal Interaction
2.1. Dairy Cattle and Buffaloes
2.2. Small Ruminants
3. Precision Livestock Farming (PLF) Advancements in Dairy Production
3.1. Dairy Cattle
3.1.1. Assessment of Health Status
Lameness Detection
Mastitis Detection
3.2. Small Ruminants
- (a)
- Automatic vacuum shut-off (AVSO), which is a mechanism, either time- or flow-based, that prevents overmilking and its negative impact on the animals’ health and welfare. Therefore, it improves the sanitary status of the milking parlour, while at the same time reducing the labour required. Bueso-Ródenas et al. [195] and Romero et al. [196] reported that the flow-based AVSO is better than manual milking, as the same amounts of milk were extracted in shorter time intervals. Furthermore, they proposed that the best combinations of the flow limit (i.e., the time interval during which the vacuum shut-off is activated) and delay time (i.e., the minimum flow set, such that below that point the vacuum shut-off is activated) for sheep are 150 g/min and 20 s or 200 g/min and 10 s, respectively, and that for goats it is 100–150 g/min and 10 s, respectively.
- (b)
- Milk meter and flow indicators, which are sensors that allow the monitoring of the milk flow of every individual animal. Electronic milk meter measurements are based on the combined data of infrared and conductivity sensors and/or a volume measuring chamber [194]. The data is analysed and presented on the display of a personal computer. Furthermore, electronic milk meters have the ability to sample and analyse milk, providing information on the animals’ health status [194,197]. Therefore, milk and flow meter applications are an essential decision-making tool for the farmer.
- (c)
- Electronic identification assessment, which is performed by various sensor-based applications such as injectable transponders [177,178], RFID [156,179,180], endoruminal boluses [180,181] and drones [182]. These systems carry individual information concerning the age, weight, gender, health status and milk flow of every animal. The producer can keep a catalogue of all individual animals in the flock, and thus, they are a very useful long-term decision-making tool. It should be noted that to date mostly the RFID technology is used, as the transmitters attached on ear tags or foot are read from the receiver installed in the milking parlour and therefore the data flow can be accessed remotely in real time.
- (d)
- Automatically operated sorting gate and weighing scale systems are connected to a flock management software, which sorts the animals into groups or modifies existing groups and separates the animals in need of treatment. These systems minimise both the labour and time spent regrouping and relocating the animals [194], practices that are commonly applied to obtain uniformity within groups in terms of milk yield [198].
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- United Nations, Department of Economic and Social A Airs Population Division. World Population Prospects 2019: Highlights; United Nations, Department of Economic and Social A Airs Population Division: New York, NY, USA, 2019. [Google Scholar]
- Hartung, J.; Banhazi, T.; Vranken, E.; Guarino, M. European farmers’ experiences with Precision Livestock Farming systems. Anim. Front. 2017, 7, 38–44. [Google Scholar] [CrossRef] [Green Version]
- Berckmans, D. Precision livestock farming technologies for welfare management in intensive livestock systems. Rev. Sci. Tech. 2014, 33, 189–196. [Google Scholar] [CrossRef]
- Mottram, T. Animal broad invited review: Precision livestock farming for dairy cows with a focus on oestrus detection. Animal 2016, 10, 1575–1584. [Google Scholar] [CrossRef] [Green Version]
- Norton, T.; Chen, C.; Larsen, M.L.V.; Berckamns, D. Review: Precision livestock farming: Building ‘digital representations’ to bring the animals closer to the farmer. Animal 2019, 13, 3009–3017. [Google Scholar] [CrossRef] [Green Version]
- Zucali, M.; Lovareli, D.; Celozzi, S.; Bacenetti, J.; Sandrucci, A.; Bava, L. Management options to reduce the environmental impact of dairy goat milk production. Livest. Sci. 2020, 231, 103888. [Google Scholar] [CrossRef]
- Gieseke, D.; Lambertz, C.; Gauly, M. Relationship between herd size and measures of animal welfare on dairy cattle farms with freestall housing in Germany. J. Dairy Sci. 2018, 101, 7397–7411. [Google Scholar] [CrossRef] [PubMed]
- Beggs, D.S.; Jongman, E.C.; Hemsworth, P.H.; Fisher, A.D. The effects of herd size on the welfare of dairy cows in a pasture-based system using animal-and resource-based indicators. J. Dairy Sci. 2019, 102, 3406–3420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seabrook, M.F. The psychological interaction between the stockman and his animals and its influence on performance of pigs and dairy cows. Vet. Rec. 1984, 115, 84–87. [Google Scholar] [CrossRef] [PubMed]
- Breuer, K.; Hemsworth, P.H.; Barnett, J.L.; Matthews, L.R.; Coleman, G.J. Behavioural response to humans and the productivity of commercial dairy cows. Appl. Anim. Behav. Sci. 2000, 66, 273–288. [Google Scholar] [CrossRef]
- Vasseur, E. Animal behavior and well-being symposium: Optimizing outcome measures of welfare in dairy cattle assessment. J. Anim. Sci. 2017, 95, 1365–1371. [Google Scholar] [CrossRef] [PubMed]
- Cornish, A.; Raubenheimer, D.; McGreevy, P. What we know about the public’s level of concern for farm animal welfare in food production in developed countries. Animals 2016, 6, 74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hemsworth, P.H.; Mellor, D.J.; Cronin, G.M.; Tilbrook, A.J. Scientific assessment of animal welfare. N. Z. Vet. J. 2015, 63, 24–30. [Google Scholar] [CrossRef]
- Désiré, L.; Boissy, A.; Veissier, I. Emotions in farm animals: A new approach to animal welfare in applied ethology. Behav. Processes 2002, 60, 165–180. [Google Scholar] [CrossRef]
- Barrell, G.K. An appraisal of methods for measuring welfare of grazing ruminants. Front. Vet. Sci. 2019, 6, 289. [Google Scholar] [CrossRef]
- Mellor, D.J. Updating animal welfare thinking: Moving beyond the “Five Freedoms” towards “a Life Worth Living”. Animals 2016, 6, 21. [Google Scholar] [CrossRef]
- Fraser, D. Assessing animal welfare at the farm and group level: The interplay of science and values. Anim. Welf. 2003, 12, 433–443. [Google Scholar]
- Mellor, D.J.; Beausoleil, N.J. Extending the ‘Five Domains’ model for animal welfare assessment to incorporate positive welfare states. Anim. Welf. 2015, 24, 241. [Google Scholar] [CrossRef]
- Mellor, D.J.; Beausoleil, N.J.; Littlewood, K.E.; McLean, A.N.; McGreevy, P.D.; Jones, B.; Wilkins, C. The 2020 five domains model: Including human-animal interactions in assessments of animal welfare. Animals 2020, 10, 1870. [Google Scholar] [CrossRef]
- Hemsworth, P.H.; Coleman, G.J.; Barnett, J.L.; Borg, S. Relationships between human-animal interactions and productivity of commercial dairy cows. J. Anim. Sci. 2000, 78, 2821–2831. [Google Scholar] [CrossRef] [PubMed]
- Szücs, E.; Geers, R.; Sossidou, E.N. Stewardship, stockmanship and sustainability in animal agriculture. Asian-Australas. J. Anim. Sci. 2009, 22, 1334–1340. [Google Scholar] [CrossRef]
- Rushen, J.; de Passille, A.M.B.; Munksgaard, L. Fear of people by cows and effects on milk yield, behavior and heart rate at milking. J. Dairy Sci. 1999, 82, 720–727. [Google Scholar] [CrossRef]
- Rushen, J.; Taylor, A.A.; De Passillé, A.M. Domestic animals’ fear of humans and its effect on their welfare. Appl. Anim. Behav. Sci. 1999, 65, 285–303. [Google Scholar] [CrossRef]
- Hemsworth, P.H. Human-animal interactions in livestock production. Appl. Anim. Behav. Sci. 2003, 81, 185–198. [Google Scholar] [CrossRef]
- Lefcourt, A.M.; Akers, R.M. Small increases in peripheral noradrenaline inhibit the milk-ejection response by means of a peripheral mechanism. J. Endocrinol. 1984, 100, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Bruckmaier, R.M.; Blum, J.W. Oxytocin release and milk removal in ruminants. J. Dairy Sci. 1998, 81, 939–949. [Google Scholar] [CrossRef]
- Ciliberti, M.G.; Albenzio, M.; Inghese, C.; Santillo, A.; Marino, R.; Sevi, A.; Caroprese, M. Peripheral blood mononuclear cell proliferation and cytokine production in sheep as affected by cortisol level and duration of stress. J. Dairy Sci. 2017, 100, 750–756. [Google Scholar] [CrossRef] [Green Version]
- Berckmans, D. Automatic on-line monitoring of animals by precision livestock farming. In Animal Production in Europe: The Way Forward in a Changing World, in between Congress of the ISAH; Madec, F., Clement, G., Eds.; ISAH: Saint-Malo, France, 2004; pp. 27–30. [Google Scholar]
- John, A.J.; Clark, C.E.F.; Freeman, M.J.; Kerrisk, K.L.; Garcia, S.C.; Halachmi, I. Review: Milking robot utilization, a successful precision livestock farming evolution. Animal 2016, 10, 1484–1492. [Google Scholar] [CrossRef] [PubMed]
- Kuipers, A.; Rossing, W. Robotic milking of dairy cows. In Progress in Dairy Science, 1st ed.; Philips, C.J.C., Ed.; CABI Publishing: Wallingford, UK, 1996; pp. 263–280. [Google Scholar]
- Halachmi, I.; Guarino, M. Editorial: Precision livestock farming: A ‘per animal’ approach using advance monitoring technologies. Animal 2016, 10, 1482–1483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halachmi, I.; Guarino, M.; Bewley, J.; Pastell, M. Smart Animal Agriculture: Application of real-time sensors to improve animal well-being and production. Annu. Rev. Anim. Biosci. 2018, 7, 403–425. [Google Scholar] [CrossRef]
- Vaintrub, M.O.; Levit, H.; Chincarini, M.; Fusaro, I.; Giammarco, M.; Vignola, G. Precision livestock farming, automats and new technologies: Possible applications in extensive dairy sheep farming. Animal 2021, 15, 100143. [Google Scholar] [CrossRef]
- Greenall, R.; Warren, E.; Warren, M.; Meijering, A.; Hogeveen, H.; de Koning, C. Integrading automatic milking installations (AMIS) into grazing systems—Lessons from Australia. In Automatic Milking: A Better Understanding, 1st ed.; Meijering, A., Hogeveen, H., De-Koning, C., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2004; pp. 273–279. [Google Scholar] [CrossRef]
- Woolford, M.; Claycomb, R.; Jago, J.; Davis, K.; Ohnstad, I.; Wieliczko, R.; Copeman, P.; Bright, K. Automatic dairy farming in New Zealand using extensive grazing systems. In Automatic Milking: A Better Understanding, 1st ed.; Meijering, A., Hogeveen, H., De-Koning, C., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2004; pp. 280–285. [Google Scholar] [CrossRef]
- Alonso, M.E.; González-Montaña, J.R.; Lomillos, J.M. Consumers’ concerns and perceptions of farm animal welfare. Animals 2020, 10, 385. [Google Scholar] [CrossRef] [Green Version]
- COM Final Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, Brussels. Available online: https://europa.eu/eurobarometer/surveys/detail/2096 (accessed on 20 May 2020).
- European-Commission. Attitudes of EU Citizens towards Animal Welfare, Report; Special Eurobarometer 442; European Commission: Brussels, Belgium, 2016; p. 84. [Google Scholar]
- Napolitano, F.; Bragaglio, A.; Sabia, E.; Serrapica, F.; Braghieri, A.; De Rosa, G. The human-animal relationship in dairy animals. J. Dairy Res. 2020, 87, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Kutzer, T.; Steilen, M.; Gygax, L.; Wechsler, B. Habituation of dairy heifers to milking routine—Effects on human avoidance distance, behavior, and cardiac activity during milking. J. Dairy Sci. 2015, 98, 5241–5251. [Google Scholar] [CrossRef] [PubMed]
- Munksgaard, L.; de Passille, A.M.; Rushen, J.; Herskin, M.S.; Kristensen, A.M. Dairy cows’ fear of people: Social learning, milk yield and behavior at milking. Appl. Anim. Behav. Sci. 2001, 73, 15–26. [Google Scholar] [CrossRef]
- Breuer, K.; Hemsworth, P.H.; Coleman, G.J. The effect of positive or negative handling on the behavioural and physiological responses of nonlactating heifers. Appl. Anim. Behav. Sci. 2003, 84, 3–22. [Google Scholar] [CrossRef]
- Waiblinger, S.; Menke, C.; Coleman, G. The relationship between attitudes, personal characteristics and behaviour of stockpeople and subsequent behaviour and production of dairy cows. Appl. Anim. Behav. Sci. 2002, 79, 195–219. [Google Scholar] [CrossRef]
- Purcell, D.; Arave, C.W.; Walters, J.L. Relationship of three measures of behavior to milk production. Appl. Anim. Behav. Sci. 1988, 21, 307–313. [Google Scholar] [CrossRef]
- Pajor, E.A.; Rushen, J.; De Passillé, A.M.B. Aversion learning techniques to evaluate dairy cattle handling practices. Appl. Anim. Behav. Sci. 2000, 69, 89–102. [Google Scholar] [CrossRef]
- Uetake, K.; Morita, S.; Hoshiba, S.; Tanaka, T. Flight distance of dairy cows and its relationship to daily routine management procedures and productivity. Anim. Sci. J. 2002, 73, 279–285. [Google Scholar] [CrossRef]
- Lensink, B.J.; Fernandez, X.; Boivin, X.; Pradel, P.; Le Neindre, P.; Veissier, I. The impact of gentle contacts on ease of handling, welfare, and growth of calves and on quality of veal meat. J. Anim. Sci. 2000, 78, 1219–1226. [Google Scholar] [CrossRef]
- Ivemeyer, S.; Knierim, U.; Waiblinger, S. Effect of human-animal relationship and management on udder health in Swiss dairy herds. J. Dairy Sci. 2011, 94, 5890–5902. [Google Scholar] [CrossRef]
- Bertenshaw, C.E.; Rowlinson, P. Exploring heifers’ perception of ‘positive’ treatment through their motivation to pursue a retreated human. Anim. Welf. 2008, 17, 313–319. [Google Scholar]
- Lindahl, C.; Pinzke, S.; Herlin, A.; Keeling, L.J. Human-animal interactions and safety during dairy cattle handling—Comparing moving cows to milking and hoof trimming. J. Dairy Sci. 2016, 99, 2131–2141. [Google Scholar] [CrossRef] [Green Version]
- Waiblinger, S.; Menke, C.; Korff, J.; Bucher, A. Previous handling and gentle interactions affect behaviour and heart rate of dairy cows during a veterinary procedure. Appl. Anim. Behav. Sci. 2004, 85, 31–42. [Google Scholar] [CrossRef]
- Hanna, D.; Sneddon, I.A.; Beattie, V.E.; Breuer, K. Effects of the stockperson on dairy cow behavior and milk yield. Anim. Sci. 2006, 82, 791–797. [Google Scholar] [CrossRef] [Green Version]
- Das, K.S.; Das, N. Pre-partum udder massaging as a means for reduction of fear in primiparous cows at milking. Appl. Anim. Behav. Sci. 2004, 89, 17–26. [Google Scholar] [CrossRef]
- Schmied, C.; Boivin, X.; Wailblinger, S. Stroking different body regions of dairy cows: Effects on avoidance and approach behavior toward humans. J. Dairy Sci. 2008, 91, 596–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmied, C.; Boivin, X.; Scala, S.; Waiblinger, S. Effect of previous stroking on reactions to a veterinary procedure. Interact. Stud. 2010, 11, 467–481. [Google Scholar] [CrossRef]
- Waiblinger, S.; Boivin, X.; Pedersen, V.; Tosi, M.V.; Janczak, A.M.; Visser, E.K.; Jones, R.B. Assessing the human-animal relationship in farmed species: A critical review. Appl. Anim. Behav. Sci. 2006, 101, 185–242. [Google Scholar] [CrossRef] [Green Version]
- Becker, B.G.; Lobato, J.P. Effect of gentle handling on the reactivity of zebu crossed calves to humans. Appl. Anim. Behav. Sci. 1997, 53, 219–224. [Google Scholar] [CrossRef]
- Grandin, T. Assessment of stress during handling and transport. J. Anim. Sci. 1997, 75, 249–257. [Google Scholar] [CrossRef] [Green Version]
- Sutherland, M.A.; Rogers, A.R.; Verkerk, G.A. The effect of temperament and responsiveness towards humans on the behavior, physiology and milk production of multiparous dairy cows in a familiar and novel milking environment. Physiol. Behav. 2012, 107, 329–337. [Google Scholar] [CrossRef]
- Sutherland, M.A.; Huddart, F.J. The effect of training first-lactation heifers to the milking parlor on the behavioral reactivity to humans and the physiological and behavioral responses to milking and productivity. J. Dairy Sci. 2012, 95, 6983–6993. [Google Scholar] [CrossRef] [PubMed]
- Hemsworth, P.H.; Barnett, J.L.; Tilbrook, A.J.; Hansen, C. The effects of handling by humans at calving and during milking on the behavior and milk cortisol concentrations of primiparous dairy cows. Appl. Anim. Behav. Sci. 1989, 22, 313–326. [Google Scholar] [CrossRef]
- Rushen, J.; Munksgaard, L.; Marnet, P.G.; De Passillé, A.M. Human contact and the effects of acute stress on cows at milking. Appl. Anim. Behav. Sci. 2001, 73, 1–14. [Google Scholar] [CrossRef]
- Saltalamacchia, F.; Tripladi, C.; Castellano, A.; Napolitano, F.; Musto, M.; De Rosa, G. Human and animal behaviour in dairy buffalo at milking. Anim. Welf. 2007, 16, 139–142. [Google Scholar]
- Napolitano, F.; Serrapica, F.; Braghieri, A.; Masucci, F.; Sabia, E.; De Rosa, G. Human-animal interactions in dairy buffalo farms. Animals 2019, 9, 246. [Google Scholar] [CrossRef] [Green Version]
- Thomas, C.S. Milking Management of Dairy Buffaloes. Ph.D. Thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2004. [Google Scholar]
- Thomas, C.S.; Borghese, A.; d’Elisi, M.G. Physiology of milk ejection. In Milking Management of Dairy Buffaloes; Rasmussen, M.D., Thomas, C.S., Borghese, A., Eds.; Bulletin of the International Dairy Federation n. 426; Bulletin of the International Dairy Federation: Bruxelles, Belgium, 2008; pp. 31–35. [Google Scholar]
- Polikarpus, A.; Napolitano, F.; Grasso, F.; Di Palo, R.; Zicarelli, F.; Arney, D.; De Rosa, G. Effect of pre-partum habituation to milking routine on behavior and lactation performance of buffalo heifers. Appl. Anim. Behav. Sci. 2014, 161, 1–6. [Google Scholar] [CrossRef]
- de Carvalhal, M.V.L.; Sant’Anna, A.C.; Pascoa, A.G.; Jung, J.; da Costa, M.J.R.P. The relationship between water buffalo cow temperament and milk yield and quality traits. Livest. Sci. 2017, 198, 109–114. [Google Scholar] [CrossRef] [Green Version]
- Simitzis, P.; Seferlis, I.; Goliomytis, M.; Bizelis, I.; Politis, I. Handling and milking frequency affect milk yield and behavior in dairy ewes. Small Rumin. Res. 2021, 198, 106351. [Google Scholar] [CrossRef]
- Baxter, E.M.; Mulligan, J.; Hall, S.A.; Donbavand, J.E.; Palme, R.; Aldujaili, E.; Zanella, A.J.; Dwyer, C.M. Positive and negative gestational handling influences placental traits and mother-offspring behavior in dairy goats. Physiol. Behav. 2016, 157, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Dimitrov, I.; Djorbineva, M. Assessment of welfare, functional parameters of the udder, milk productive and reproductive traits in dairy ewes of different temperament. Bulg. J. Agric. Sci. 2003, 9, 707–711. [Google Scholar]
- Jackson, K.M.A.; Hackett, D. A note: The effects of human handling on heart girth, behaviour and milk quality in dairy goats. Appl. Anim. Behav. Sci. 2007, 108, 332–336. [Google Scholar] [CrossRef]
- Hargreaves, A.L.; Hutson, G.D. The effect of gentling on heart rate, flight distance and aversion of sheep to a handling procedure. Appl. Anim. Behav. Sci. 1990, 26, 243–252. [Google Scholar] [CrossRef]
- Caroprese, M.; Napolitano, F.; Boivin, X.; Albenzio, M.; Annicchiarico, G.; Sevi, A. Development of affinity to the stockperson in lambs from two breeds. Physiol. Behav. 2012, 105, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Nowak, R.; Boivin, X. Filial attachment in sheep: Similarities and differences between ewe-lamb and human-lamb relationships. Appl. Anim. Behav. Sci. 2015, 164, 12–28. [Google Scholar] [CrossRef]
- Tallet, C.; Veissier, I.; Boivin, X. Human contact and feeding as rewards for the lamb’s affinity to their stockperson. Appl. Anim. Behav. Sci. 2005, 94, 59–73. [Google Scholar] [CrossRef]
- Tallet, C.; Veissier, I.; Boivin, X. How does the method used to feed lambs to modulate their affinity to their human caregiver? Appl. Anim. Behav. Sci. 2009, 119, 56–65. [Google Scholar] [CrossRef]
- Murray, T.L.; Blache, D.B.; Bencini, R. The selection of dairy sheep on calm temperament before milking and its effect on management and milk production. Small Rumin. Res. 2009, 87, 45–49. [Google Scholar] [CrossRef]
- Napolitano, F.; De Rosa, G.; Girolami, A.; Scavone, M.; Braghieri, A. Avoidance distance in sheep: Test-retest reliability and relationship with stockmen attitude. Small Rumin. Res. 2011, 99, 81–86. [Google Scholar] [CrossRef]
- Caja, G.; Castro-Costa, A.; Salama, A.A.; Oliver, J.; Baratta, M.; Ferrer, C.; Knight, C.H. Sensing solutions for improving the performance, health and wellbeing of small ruminants. J. Dairy Res. 2020, 87, 34–46. [Google Scholar] [CrossRef]
- Lovarelli, D.; Bacenetti, J.; Guarino, M. A review on dairy cattle farming: Is precision livestock farming the compromise for an environmental, economic and social sustainable production? J. Clean. Prod. 2020, 262, 121409. [Google Scholar] [CrossRef]
- Caja, G.; Castro-Costa, A.; Knight, C.H. Engineering to support wellbeing of dairy animals. J. Dairy Res. 2016, 83, 136–147. [Google Scholar] [CrossRef]
- Krueger, A.; Cruickshank, J.; Trevisi, E.; Bionaz, M. Systems for evaluation of welfare on dairy farms. J. Dairy Res. 2020, 87, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Stygar, A.H.; Gómez, Y.; Bertesell, G.V.; Costa, E.D.; Canall, E.; Niemi, J.K.; Llonch, P.; Pastell, M. A systematic review on commercially available and validated sensor technologies for welfare assessment for dairy cattle. Front. Vet. Sci. 2021, 8, 634338. [Google Scholar] [CrossRef]
- Maltz, E.; Antler, I.; Halachmi, I.; Schmilovitch, Z. Precision concentrate rationing to dairy cow using on-line daily milk composition sensor, milk yield and body weight. In Precision Livestock Farming ’09; Wageningen Academic Publishers: Wageningen, The Netherlands, 2009; pp. 17–23. [Google Scholar]
- Kwong, K.H.; Wu, T.T.; Sasloglou, K.; Stephen, B.; Cao, D.; Goh, D.; Goh, H.G.; Goo, S.K.; Gilroy, M.; Tachtatzis, C.; et al. Implementation of Herd Management System with Wireless Sensor Networks. In Precision Livestock Farming ’09; Wageningen Academic Publishers: Wageningen, The Netherlands, 2009; pp. 149–157. [Google Scholar]
- Peter, A.T.; Bosu, W.T.K. Postpartum ovarian activity in dairy-cows—Correlation between behavioural oestrus, pedometer measurement and ovulations. Theriogenology 1986, 26, 111–115. [Google Scholar] [CrossRef]
- Koelsch, R.K.; Aneshansley, D.J.; Buttler, W.R. Analysis of activity measurement for accurate estrus detection in dairy-cattle. J. Agric. Eng. Res. 1994, 58, 107–114. [Google Scholar] [CrossRef]
- Roelofs, J.B.; Van Eerdenburg, E.J.; Soede, N.M.; Kemp, B. Pedometer readings for oestrus detection and as a predictor for time of ovulation in dairy cattle. Theriogenology 2005, 64, 1690–1703. [Google Scholar] [CrossRef] [PubMed]
- Kamphuis, C.; Dela Rue, B.; Mein, G.; Jago, J. Development of protocols to evaluate in-line mastitis-detection systems. J. Dairy Sci. 2013, 96, 4047–4058. [Google Scholar] [CrossRef]
- Stevenson, J.S.; Smith, M.W.; Jaeger, J.R.; Corah, L.R.; Lefever, D.G. Detection of estrus by visual observation and radiotelemetry in peripubertal, estrus-synchronized beef heifers. J. Anim. Sci. 1996, 74, 729–735. [Google Scholar] [CrossRef]
- Lopez, H.; Caraviello, D.Z.; Satter, L.D.; Fricke, P.M.; Wiltbank, M.C. Relationship between level of milk production and multiple ovulations in lactating cows. J. Dairy Sci. 2005, 88, 2783–2793. [Google Scholar] [CrossRef]
- Kamphuis, C.; DelaRue, B.; Burke, C.R.; Jago, J. Field evaluation of 2 collar-mounted activity meters for detecting cows in estrus on a large pasture-grazed dairy farm. J. Dairy Sci. 2012, 95, 3045–3056. [Google Scholar] [CrossRef] [PubMed]
- Michaelis, I.; Burfeind, O.; Heuwieser, W. Evaluation of oestrus detection in dairy cattle comparing an automated activity monitoring system to visual observation. Reprod. Domest. Anim. 2014, 49, 621–628. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, J.S.; Hill, S.; Nebel, R.; De Jarnette, J. Ovulation timing and conception risk after automated activity monitoring in lactating dairy cows. J. Dairy Sci. 2014, 97, 4296–4308. [Google Scholar] [CrossRef]
- Haladjian, J.; Haug, J.; Nüske, S.; Bruegge, B. A wearable sensor system for lameness detection in dairy cattle. Multimodal Technol. Interact. 2018, 2, 27. [Google Scholar] [CrossRef] [Green Version]
- Hempstalk, K.; Burke, C.R.; Kamphuis, C. Verification of an automated camera-based system of oestrus detection in dairy cows. Proc. N. Z. Soc. Anim. Prod. 2013, 73, 26–28. [Google Scholar]
- Mayo, L.M.; Silvia, W.J.; Ray, D.L.; Jones, B.W.; Stone, A.E.; Tsai, I.C.; Clark, J.D.; Bewley, J.M.; Heersche, G., Jr. Automated estrous detection using multiple commercial precision dairy monitoring technologies in synchronized dairy cows. J. Dairy Sci. 2019, 102, 2645–2656. [Google Scholar] [CrossRef]
- Marquez, H.J.P.; Ambrose, D.J.; Schaefer, A.L.; Cook, N.J.; Bench, C.J. Infrared thermography and behavioral biometrics associated with estrus indicators and ovulation in estrus-synchronized dairy cows housed in tiestalls. J. Dairy Sci. 2019, 102, 4427–4440. [Google Scholar] [CrossRef] [Green Version]
- Marquez, H.J.P.; Ambrose, D.J.; Schaefer, A.L.; Cook, N.J.; Bench, C.J. Evaluation of infrared thermography combined with behavioral biometrics for estrus detection in naturally cycling dairy cows. Animal 2021, 15, 100205. [Google Scholar] [CrossRef]
- Yu, G.-M.; Maeda, T. Inline progesterone monitoring in the dairy industry. Trends Biotechnol. 2017, 35, 579–582. [Google Scholar] [CrossRef]
- Samsonova, J.V.; Safronova, V.A.; Osipov, A.P. Pretreatment-free lateral flow enzyme immunoassay for progesterone detection in whole cows’ milk. Talanta 2015, 132, 685–689. [Google Scholar] [CrossRef]
- Gaillard, C.; Barbu, H.; Sørensen, M.T.; Sehested, J.; Callesen, H.; Vestergaard, M. Milk yield and estrous behavior during eight consecutive estruses in Holstein cows fed standardized or high energy diets and grouped according to live weight changes in early lactation. J. Dairy Sci. 2016, 99, 3134–3143. [Google Scholar] [CrossRef] [Green Version]
- Pastel, M.E.; Kujala, M. A probabilistic Neural Network Model for lameness detection. J. Dairy Sci. 2007, 90, 2283–2292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byabazaire, J.; Olariu, C.; Taneja, M.; Davy, A. Lameness detection as a service: Application of machine learning to an internet of cattle. In Proceedings of the 16th IEEE Annual Consumer Communications and Networking Conference, Las Vegas, NV, USA, 11–14 January 2019. [Google Scholar] [CrossRef] [Green Version]
- Taneja, M.; Byabazaire, J.; Jalodia, N.; Davy, A.; Olariu, C.; Malone, P. Machine learning based fog computing assisted data-driven approach for early lameness detection in dairy cattle. Comput. Electron. Agric. 2020, 171, 105286. [Google Scholar] [CrossRef]
- Van Hertem, T.; Maltz, E.; Antler, A.; Romanini, C.E.B.; Viazzi, S.; Bahr, C.; Schlageter-Tello, A.; Lokhorst, C.; Berckmans, D.; Halachmi, I. Lameness detection based on multivariate continuous sensing of milk yield, rumination, and neck activity. J. Dairy Sci. 2013, 96, 4286–4298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kokin, E.; Praks, J.; Veermäe, I.; Poikalainen, V.; Vallas, M. IceTag 3DTM accelerometric device in cattle lameness detection. Agron. Res. 2014, 12, 223–230. [Google Scholar]
- Thorup, V.M.; Nielsen, B.L.; Robert, P.-E.; Giger-Reverdin, S.; Konka, J.; Michie, C.; Friggens, N.C. Lameness affects cow feeding but not rumination behavior as characterized from sensor data. Front. Vet. Sci. 2016, 10, 37. [Google Scholar] [CrossRef] [Green Version]
- Poursaberi, A.; Bahr, C.; Pluk, A.; Van Neuffel, A.; Berckmans, D. Real-time automatic lameness detection based on back posture extraction in dairy cattle: Shape analysis of cow with image processing techniques. Comput. Electron. Agric. 2010, 74, 110–119. [Google Scholar] [CrossRef]
- Viazzi, S.; Bahr, C.; Schlageter-Tello, A.; Van Hertem, T.; Romanini, C.E.B.; Pluk, A.; Halachmi, I.; Lokhorst, C.; Berckmans, D. Analysis of individual classification of lameness using automatic measurement of back posture in dairy cattle. J. Dairy Sci. 2013, 96, 257–266. [Google Scholar] [CrossRef] [Green Version]
- Romanini, C.E.B.; Bahr, C.; Viazzi, S.; Van Hertem, T.; Schlageter-Tello, A.; Halachmi, I.; Lokhorst, K.; Berckmans, D. Application of image based filtering to improve the performance of an automated lameness detection system for dairy cows. In Proceedings of the Annual International Meeting of ASABE, Kansas City, MO, USA, 21–23 July 2013. [Google Scholar] [CrossRef]
- Jabbar, K.A.; Hansen, M.F.; Smith, M.L.; Smith, L.N. Early and non-intrusive lameness detection in dairy cows using 3-dimentional video. Biosyst. Eng. 2017, 153, 63–69. [Google Scholar] [CrossRef]
- Zhao, K.; Bewley, J.M.; He, D.; Jin, X. Automatic lameness detection in dairy cattle based on leg swing analysis with image processing technique. Comput. Electron. Agric. 2018, 148, 226–236. [Google Scholar] [CrossRef]
- Kang, X.; Zhang, X.D.; Liu, G. Accurate detection of lameness in dairy cattle with computer vision: A new and individualized detection strategy based on the analysis of the supporting phase. J. Dairy Sci. 2020, 103, 10628–10638. [Google Scholar] [CrossRef]
- Wu, D.; Wu, Q.; Yin, X.; Jiang, B.; Wang, H.; He, D.; Song, H. Lameness detection of dairy cows based on the YOLOv3 deep learning algorithm and a relative step size characteristic vector. Biosyst. Eng. 2020, 189, 150–163. [Google Scholar] [CrossRef]
- Cavero, D.; Tolle, K.H.; Buxade, C.; Krieter, J. Mastitis detection in dairy cows by application of fuzzy logic. Livest. Sci. 2006, 105, 207–213. [Google Scholar] [CrossRef]
- Khatun, M.; Clark, C.E.F.; Lyons, N.A.; Thomson, P.C.; Kerrisk, K.L.; García, S.C. Early detection of clinical mastitis from electrical conductivity data in automatic milking system. Anim. Prod. Sci. 2017, 57, 1226–1232. [Google Scholar] [CrossRef]
- Song, X.; van der Tol, P.P.J. Automatic detection of clinical mastitis in Astronaut A3 TM milking robot. In Proceedings of the 1st North American Conference on Precision Dairy Management, Toronto, ON, Canada, 2–5 March 2010; Available online: http://www.precisiondairy.com/proceedings/s8vandertol.pdf (accessed on 28 May 2020).
- Friggens, N.C.; Chagunda, M.G.G.; Bjerring, M.; Ridder, C.; Hojsgaard, S.; Larsen, T. Estimating degree of mastitis from time series measurements in milk: A test model based on lactate dehydrogenase measurements. J. Dairy Sci. 2007, 90, 5415–5427. [Google Scholar] [CrossRef] [Green Version]
- Jensen, D.B.; Hogeveen, H.; De Vries, A. Bayesian integration of sensor information and a multivariate dynamic linear model for prediction of dairy cow mastitis. J. Dairy Sci. 2016, 99, 7344–7361. [Google Scholar] [CrossRef] [Green Version]
- Højsgaard, S.; Friggens, N.C. Quantifying degree if mastitis from common trends in panel of indicators for mastitis in dairy cows. J. Dairy Sci. 2010, 93, 582–592. [Google Scholar] [CrossRef] [Green Version]
- Marino, R.; Petrera, F.; Speroni, M.; Rutigliano, T.; Gali, A.; Abeni, F. Unraveling the relationship between milk yield and quality at the test day with rumination time recorded by a PLF technology. Animals 2021, 11, 1583. [Google Scholar] [CrossRef]
- Zaninelli, M.; Redaelli, V.; Luzi, F.; Bronzo, V.; Mitchell, M.; Dell’Orto, V.; Bontempo, V.; Cattaneo, D.; Savoini, G. First evaluation of infrared thermography as a tool for the monitoring of udder health status in farms of dairy cows. Sensors 2018, 18, 862. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Kang, X.; Feng, N.; Liu, G. Automatic recognition of dairy cow mastitis from thermal images by deep learning detector. Comput. Electron. Agric. 2020, 178, 105754. [Google Scholar] [CrossRef]
- Jegadeesan, S.; Venkatesan, G.K.D.P. Distant biometry in cattle farm using wireless sensor networks. In Proceedings of the International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 21–22 October 2017. [Google Scholar] [CrossRef]
- Neethirajan, S.; Kemp, B. Digital Livestock Farming. Sens. Biosens. Res. 2021, 32, 100408. [Google Scholar] [CrossRef]
- Park, M.-C.; Jung, H.-C.; Kim, T.-K.; Ha, O.-K. Design of cattle health monitoring system using wireless bio-sensor networks. In Electronics, Communications and Networks IV, 1st ed.; Hussain, A., Ivanovic, M., Eds.; CRC Press: Boca Raton, FL, USA, 2015; pp. 225–228. [Google Scholar]
- Reith, S.; Hoy, S. Relationship between daily rumination time and estrus of dairy cows. J. Dairy Sci. 2012, 95, 6416–6420. [Google Scholar] [CrossRef] [PubMed]
- Schirmann, K.; von Keyserlingk, M.A.; Weary, D.M.; Veira, D.M.; Heuwieser, W. Validation of a system for monitoring rumination in dairy cows. J. Dairy Sci. 2009, 92, 6052–6055. [Google Scholar] [CrossRef] [PubMed]
- Steinmetz, M.; von Soosten, D.; Hummel, J.; Meyer, U.; Dänicke, S. Validation of the RumiWatch Converter V0. 7.4. 5 classification accuracy for the automatic monitoring of behavioural characteristics in dairy cows. Arch. Anim. Nutr. 2020, 74, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Zehner, N.; Umstätter, C.; Niederhauser, J.J.; Schick, M. System specification and validation of a noseband pressure sensor for measurement of ruminating and eating behavior in stable-fed cows. Comput. Electron. Agric. 2017, 136, 31–41. [Google Scholar] [CrossRef]
- Andrew, W.; Greatwood, C.; Burghardt, T. Fusing animal biometrics with autonomous robotics: Drone-based search and individual ID of Friesian cattle. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) Workshops, Snowmass, CO, USA, 1–5 March 2020. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, S.K. Cattle recognition: A new frontier in visual animal biometrics research. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 2019, 90, 689–708. [Google Scholar] [CrossRef]
- Okura, F.; Ikuma, S.; Makihara, Y.; Muramatsu, D.; Nakada, K.; Yagi, Y. RGB-D video-based individual identification of dairy cows using gait and texture analyses. Comput. Electron. Agric. 2019, 165, 104944. [Google Scholar] [CrossRef]
- Martins, B.M.; Mendes, A.L.C.; Silva, L.F.; Moreira, T.R.; Costa, J.H.C.; Rotta, P.P.; Chizzotti, M.L.; Marcondes, M.I. Estimating body weight, body condition score, and type traits in dairy cows using three dimensional cameras and manual body measurements. Livest. Sci. 2020, 236, 104054. [Google Scholar] [CrossRef]
- Pezzuolo, A.; Guarino, M.; Sartori, L.; Marinello, F. A feasibility on the use of a structured light depth-camera for three-dimensional body measurements of dairy cows in free-stall barns. Sensors 2018, 18, 673. [Google Scholar] [CrossRef] [Green Version]
- Halachmi, I.; Polak, P.; Roberts, D.J.; Klopčič, M. Cow body shape and automation of condition scoring. J. Dairy Sci. 2008, 91, 4444–4451. [Google Scholar] [CrossRef] [Green Version]
- Halachmi, I.; Klopčič, M.; Polak, P.; Roberts, D.J.; Bewley, J.M. Automatic assessment of dairy cattle body condition score using thermal imaging. Comput. Electron. Agric. 2013, 99, 35–40. [Google Scholar] [CrossRef]
- Bewley, J.M.; Peacock, A.M.; Lewis, O.; Boyce, R.E.; Roberts, D.J.; Coffey, M.P.; Kenyon, S.J.; Schutz, M.M. Potential for estimation of body condition scores in dairy cattle from digital images. J. Dairy Sci. 2008, 91, 3439–3453. [Google Scholar] [CrossRef] [PubMed]
- Cha, E.; Hertl, J.A.; Bar, D.; Gröhn, Y.T. The cost of different types of lameness in dairy cows calculated by dynamic programming. Prev. Vet. Med. 2010, 97, 1–8. [Google Scholar] [CrossRef]
- Hernandez, J.; Shearer, J.K.; Webb, D.W. Effect of lameness on milk yield in dairy cows. J. Am. Vet. Med. Assoc. 2002, 220, 640–644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onyiro, O.M.; Offer, J.; Brotherstone, S. Risk farctors and milk yield losses associated with lameness in Holstein-Friesian dairy cattle. Animal 2008, 2, 1230–1237. [Google Scholar] [CrossRef] [Green Version]
- Morris, M.J.; Kaneko, K.; Walker, S.L.; Jones, D.N.; Routly, J.E.; Smith, R.F.; Dobson, H. Influence of lameness on follicular growth, ovulation, reproductive hormone concentrations and estrus behavior in dairy cows. Theriogenology 2011, 76, 658–668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peake, K.A.; Biggs, A.M.; Smith, R.F.; Christley, R.M.; Routly, J.E.; Dobson, H. Effects of lameness, subclinical mastitis and loss of body condition on the reproductive performance of dairy cows. Vet. Rec. 2011, 168, 301. [Google Scholar] [CrossRef] [PubMed]
- Booth, C.J.; Warnick, L.D.; Grohn, Y.T.; Maizon, D.O.; Guard, C.L.; Jansen, D. Effect of lameness on culling in dairy cows. J. Dairy Sci. 2004, 87, 4115–4122. [Google Scholar] [CrossRef] [Green Version]
- Thomsen, P.T.; Munksgaard, L.; Tøgersen, F.A. Evaluation of a lameness system for dairy cows. J. Dairy Sci. 2008, 91, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Mc Manus, C.; Tanure, C.B.; Peripolli, V.; Seixas, L.; Fischer, V.; Gabbi, A.M.; Menegassi, S.R.O.; Stumpf, M.T.; Kolling, G.J.; Dias, E.; et al. Infrared thermography in animal production: An overview. Comput. Electron. Agric. 2016, 123, 10–16. [Google Scholar] [CrossRef]
- Ruegg, P.L. A 100-Year Review: Mastitis detection, management, and prevention. J. Dairy Sci. 2017, 100, 10381–10397. [Google Scholar] [CrossRef] [Green Version]
- Breed, R.S.; Brew, J.D. The control of public milk supplies by the use of the microscopic method. J. Dairy Sci. 1917, 1, 259–271. [Google Scholar] [CrossRef]
- Kitchen, B.J. Review of the progress of dairy science: Bovine mastitis: Milk composition changes and related diagnostic tests. J. Dairy Res. 1981, 48, 167–188. [Google Scholar] [CrossRef] [PubMed]
- Kemp, M.; Nolan, A.; Cripps, P.; Fitzpatrick, J. Animal-based measurements on the severity of mastitis in dairy cows. Vet. Rec. 2008, 163, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Huijps, K.; Lam, T.J.; Hogeveen, H. Costs of mastitis: Facts and perception. J. Dairy Res. 2008, 75, 113–120. [Google Scholar] [CrossRef] [Green Version]
- Rosa, G.J.M. Grand challenge in Precision Livestock Farming. Front. Anim. Sci. 2021, 2, 650324. [Google Scholar] [CrossRef]
- Rutten, D.J.; Velthuis, G.J.; Steeneveld, W.; Hogeveen, H. Invited review: Sensors to support health management of dairy farms. J. Dairy Sci. 2013, 96, 1928–1952. [Google Scholar] [CrossRef] [PubMed]
- Morgan-Davies, C.; Lambe, N.; Wishart, H.; Waterhouse, T.; Kenyon, F.; McBean, D.; McCracken, D. Impacts of using a precision livestock system targeted approach in mountain flocks. Livest. Sci. 2018, 208, 67–76. [Google Scholar] [CrossRef]
- Wishart, H.M. Precision Livestock Farming: Potential Application for Sheep Systems in Harsh Environments. Ph.D. Thesis, University of Edinburgh, Edinburgh, UK, 2019. [Google Scholar]
- Mansbridge, N.; Mitsch, J.; Bollard, N.; Ellis, K.; Miguel-Pacheco, G.G.; Dottorini, T.; Kaler, J. Feature selection and comparison of machine learning algorithms in classification of grazing and rumination behaviour in sheep. Sensors 2018, 18, 3532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barwick, J.; Lamb, D.W.; Dobos, R.; Welch, M.; Trotter, M. Categorising sheep activity using a tri-axial accelerometer. Comput. Electron. Agric. 2018, 145, 289–297. [Google Scholar] [CrossRef]
- Virgilio, A.D.; Morales, J.M.; Lambertucci, S.A.; Shepard, E.L.C.; Wilson, R.P. Multi-dimensional Precision Livestock Farming: A potential toolbox for sustainable rangeland management. PeerJ 2018, 6, e4867. [Google Scholar] [CrossRef] [Green Version]
- Meunier, B.; Giname, C.; Houdebine, M.; Fleurance, G.; Mialon, M.-M.; Siberberg, M.; Boisy, A. Development of a multi-sensor and multi-application device for monitoring indoor and outdoor sheep behaviour. In Proceedings of the 7th European Conference of Precision Livestock Farming (EC-PLF), Milan, Italy, 15 September 2015; p. 12. [Google Scholar]
- Beker, A.; Gipson, T.A.; Puchala, R.; Askar, A.R.; Tesfai, K.; Detweiler, G.D.; Asmare, A.; Goetsch, A.L. Energy expenditure and activity of different types of small ruminants grazing varying pastures in the summer. J. Appl. Anim. Res. 2010, 37, 1–14. [Google Scholar] [CrossRef]
- Betteridge, K.; Hoogendoorn, C.; Costall, D.; Carter, M.; Griffiths, W. Sensors for detecting and logging spatial distribution of urine patches of grazing female sheep and cattle. Comput. Electron. Agric. 2010, 73, 66–73. [Google Scholar] [CrossRef]
- Burgunder, J.; Petrželková, K.; Modrý, D.; Kato, A.; Maclntosh, A.J.J. Fractal measurements in activity patterns: Do gastrointestinal parasites affect the complexity of sheep behaviour? Appl. Anim. Behav. Sci. 2018, 205, 44–53. [Google Scholar] [CrossRef]
- Mozo, R.; Alabart, J.L.; Rivas, E.; Folch, J. New method to automatically evaluate the sexual activity of the ram based on accelerometer records. Small Rumin. Res. 2019, 172, 16–22. [Google Scholar] [CrossRef]
- Cronin, G.M.; Beganovic, D.F.; Sutton, A.L.; Palmer, D.J.; Thomson, P.C.; Tammen, I. Manifestation of neuronal ceroid lipofuscinosis in Australian Merino sheep: Observations on altered behaviour and growth. Appl. Anim. Behav. Sci. 2016, 175, 32–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvarenga, F.A.P.; Borges, I.; Palkovič, L.; Rodina, J.; Oddy, V.H.; Dobos, R.C. Using a three-axis accelerometer to identify and classify sheep behaviour at pasture. Appl. Anim. Behav. Sci. 2016, 181, 91–99. [Google Scholar] [CrossRef]
- Yiakoulaki, M.D.; Hasanagas, N.D.; Michelaki, E.; Tsiobani, E.T.; Antoniou, I. Social network analysis of sheep grazing different plant functional groups. Grass Forage Sci. 2018, 74, 129–140. [Google Scholar] [CrossRef] [Green Version]
- Alhamada, M.; Debus, N.; Lurette, A.; Bocquier, F. Validation of automated electronic oestrus detection in sheep as an alternative to visual observation. Small Rumin. Res. 2016, 134, 97–104. [Google Scholar] [CrossRef]
- Alhamada, M.; Debus, N.; Lurette, A.; Bocquier, F. Automatic oestrus detection system enables monitoring of sexual behaviour in sheep. Small Rumin. Res. 2017, 149, 105–111. [Google Scholar] [CrossRef]
- de Freitas, A.C.B.; Vega, W.H.O.; Quirino, C.R.; Bartholazzi, A., Jr.; David, C.M.G.; Geraldo, A.T.; Rua, M.A.S.; Rojas, L.F.C.; de Filho, J.E.A.; Dias, A.J.B. Surface temperature of ewes during estrous cycle measured by infrared thermography. Theriogenology 2018, 119, 245–259. [Google Scholar] [CrossRef] [PubMed]
- Façanha, D.A.E.; Peixoto, G.C.X.; Ferreira, J.B.; de Sousa, J.E.R.; Paiva, R.D.M.; Ricarte, A.R.F. Detecting estrus in Canindé goats by two infrared thermography methods. Acta Vet. Bras. 2018, 12, 49–54. [Google Scholar] [CrossRef]
- Byrne, D.T.; Berry, D.P.; Esmonde, H.; McGovern, F.; Creighton, P.H.; McHugh, N. Infrared thermography as a tool to detect hoof lesions in sheep. Transl. Anim. Sci. 2019, 3, 577–588. [Google Scholar] [CrossRef]
- Byrne, D.T.; Esmonde, H.; Berry, D.P.; McGovern, F.; Creighton, P.; McHugh, N. Sheep lameness detection from individual hoof load. Comput. Electron. Agric. 2019, 158, 241–248. [Google Scholar] [CrossRef]
- Abecia, J.A.; Maria, G.A.; Estévez-Moreno, L.X.; Miranda-De La Lama, G.C. Daily rhythms of body temperature around lambing in sheep measured non-invasively. Biol. Rhythm Res. 2019, 51, 988–993. [Google Scholar] [CrossRef]
- Fuchs, B.; Sørheim, K.M.; Chincarini, M.; Brunberg, E.; Stubsjøen, S.M.; Bratbergsengen, K.; Hvasshovd, S.O.; Zimmermann, B.; Lande, U.S.; Grøva, L. Heart rate sensor validation and seasonal and diurinal variation of body temperature and heart rate in domestic sheep. Vet. Anim. Sci. 2019, 8, 100075. [Google Scholar] [CrossRef] [PubMed]
- Ribó, O.; Korn, C.; Meloni, U.; Cropper, M.; De Winne, P.; Cuypers, M. IDEA: A large-scale project on electronic identification of livestock. Rev. Sci. Tech. 2001, 20, 426–436. [Google Scholar] [CrossRef] [Green Version]
- Bortolotti, L.; Zampieri, A.; Miatto, A. Practical experience on the use of injectable transponders in flock of Quessant sheep. Large Anim. Rev. 2013, 19, 219–223. [Google Scholar]
- Voulodimos, A.S.; Patrikakis, C.Z.; Sideridis, A.B.; Ntafis, V.A.; Xylouri, E.M. 2010. A complete farm management system based on animal identification using RFID technology. Comput. Electron. Agric. 2010, 70, 380–388. [Google Scholar] [CrossRef]
- Cappai, M.G.; Rubiu, N.G.; Nieddu, G.; Bitti, M.P.L.; Pinna, W. Analysis of fieldwork activities during milk production recording in dairy ewes by means of individual ear tag (ET) alone or plus RFID based electronic identification (EID). Comput. Electron. Agric. 2018, 144, 324–328. [Google Scholar] [CrossRef]
- Hentz, F.; Umstätter, C.; Gilaverte, S.; Prado, O.R.; Silva, S.J.A.; Monteiro, A.L.G. Electronic bolus design impacts on administration. J. Anim. Sci. 2014, 92, 2686–2692. [Google Scholar] [CrossRef]
- Xu, B.; Wang, W.; Falzon, G.; Kwan, P.; Guo, L.; Sun, Z.; Li, C. Livestock classification and counting in quadcopter aerial images using Mask R-CNN. Int. J. Remote Sens. 2020, 41, 8121–8142. [Google Scholar] [CrossRef] [Green Version]
- Bishop, J.C.; Falzon, G.; Trotter, M.; Kwan, P.; Meek, P.D. Sound analysis and detection, and the potential for precision livestock farming—A sheep vocalization case study. In Proceedings of the 1st Asian-Australasian Conference on Precision Pastures and Livestock Farming, Hamilton, Australia, 16–18 October 2017. [Google Scholar] [CrossRef]
- Al-Thani, N.; Albuainain, A.; Alnaimi, F.; Zorba, N. Drones for sheep livestock monitoring. In Proceedings of the 20th Mediterranean Electrotechnical Conference (MELECON), Palermo, Italy, 16–18 June 2020. [Google Scholar] [CrossRef]
- Ren, K.; Karlsson, J.; Liuska, M.; Hartikainen, M.; Hansen, I.; Jørgensen, G.H.M. A sensor-fusion-system for tracking sheep location and behaviour. Int. J. Distrib. Sens. Netw. 2020, 16, 155014772092177. [Google Scholar] [CrossRef]
- Zobel, G.; Weary, D.M.; Leslie, K.; Chapinal, N.; von Keyserlingk, M.A.G. Technical note: Validation of data logger for recording behavior in dairy goats. J. Dairy Sci. 2015, 98, 1082–1089. [Google Scholar] [CrossRef]
- Jouven, M.; Leroy, H.; Ickowicz, A.; Lapeyronie, P. Can virtual fences be used to control grazing sheep? Rangelands 2011, 34, 111–123. [Google Scholar] [CrossRef]
- Brunberg, E.I.; Bøe, K.E.; Sørheim, K.M. Testing a new virtual system on sheep. Acta Agric. Scand. A Anim. Sci. 2015, 65, 168–175. [Google Scholar] [CrossRef]
- Brunberg, E.I.; Bergslid, I.K.; Bøe, K.E.; Sørheim, K.M. The ability of ewes with lambs to learn a virtual fencing system. Animal 2017, 11, 2045–2050. [Google Scholar] [CrossRef] [Green Version]
- Marini, D.; Llewellyn, R.; Belson, S.; Lee, C. Controlling within-field sheep movement using virtual fencing. Animals 2018, 8, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marini, D.; Meuleman, M.D.; Belson, S.; Rodenburg, T.B.; Llewellyn, R.; Lee, C. Developing an ethically virtual fencing system for sheep. Animals 2018, 8, 33. [Google Scholar] [CrossRef] [Green Version]
- Kearton, T.; Marini, D.; Cowley, F.; Belson, S.; Lee, C. The effect of virtual fencing stimuli on stress responses and behaviour in sheep. Animals 2019, 9, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fay, P.K.; McElligot, V.T.; Havstad, K.M. Containment of free-ranging goats using pulsed-radio-wave-activates shock collars. Appl. Anim. Behav. Sci. 1989, 23, 165–171. [Google Scholar] [CrossRef]
- Alejandro, M. Automation devices in sheep and goat machine milking. Small Rumin. Res. 2016, 142, 48–50. [Google Scholar] [CrossRef]
- Bueso-Ródenas, J.; Romero, G.; Arias, R.; Rodrígez, A.M.; Díaz, J.R. Effect of automatic cluster removers on milking efficiency and teat condition of Machenga ewes. J. Dairy Sci. 2015, 98, 3887–3895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romero, G.; Bueso-Ródenas, J.; Gascó, P.; Díaz, J.R. Effect of the automatic cluster removers (ACRs) in the milking of Murciano-Granadina goats during lactation. Small Rumin. Res. 2015, 128, 54–58. [Google Scholar] [CrossRef]
- Ramsahoi, L.; Gao, A.; Fabri, M.; Odumeru, J.A. Assessment of the application of an automated electronic milk analyzer for the enumeration of total bacteria in raw goat milk. J. Dairy Sci. 2001, 94, 3279–3287. [Google Scholar] [CrossRef] [Green Version]
- Sevi, A.; Taibi, L.; Albenzio, M.; Muscio, A.; Dell’Aquila, S.; Napolitano, F. Behavioral, adrenal, immune, and reproductive responses of lactating ewes to regrouping and relocation. J. Anim. Sci. 2001, 79, 1457–1465. [Google Scholar] [CrossRef] [Green Version]
- Papachristoforou, C.; Tzamaloukas, O. Innovations have improved the efficiency of ruminant production systems in Cyprus. In New Trends for Innovation in the Mediterranean Animal Production, 1st ed.; Bouche, R., Derkimba, A., Casabianca, F., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2009; pp. 217–226. [Google Scholar] [CrossRef]
Parameter of Interest | Applied Technology | Reference |
---|---|---|
Feeding | Precision concentrate rationing | [85] |
Herd management | Wireless sensing | [86] |
Oestrus detection | Pedometers | [87,88,89,90] |
Animal-mounted detectors | [91,92,93,94,95,96,97] | |
Camera-based systems | [97,98] | |
Infrared sensors | [99,100] | |
Herd navigator | [101,102,103] | |
Lameness detection | Neural network models | [104] |
Internet of things (IoT) | [105,106] | |
Mount detectors | [106,107,108,109] | |
Camera-based systems | [110,111,112,113,114,115,116] | |
Mastitis detection | Milk’s electrical conductivity analysis sensors | [117,118] |
Milk colour analysis sensors | [119] | |
Lactate dehyfrogenase analysis sensors | [120] | |
Various sensors installed on milking robot for measuring milk yield, body weight, lactose, fat and protein percentages, blood percentage and somatic cells counts | [35,121,122,123] | |
Infrared sensors and thermal cameras | [124,125] | |
Health status and behaviour | Various animal-mounted wireless sensors | [126] |
Biometric sensors | [127,128] | |
Rumination and health status monitoring | Microphones | [129,130] |
Accelerometers | [131,132] | |
Individual identification | Drones | [133] |
Camera-based monitoring | [134,135,136,137] | |
Body weight and body condition score estimation | Camera-based monitoring | [134,135,136,137] |
Ultrasonic sensors | [138] | |
Thermal cameras | [138,139,140] |
Parameter of Interest | Applied Technology | Reference |
---|---|---|
Grazing and ruminating behaviour | Animal-mounted accelerometer/gyroscope sensor | [158] |
Animal-mounted tri-axial accelerometer loggers | [159] | |
Resting, grazing and searching behaviours | Animal-mounted tri-axial accelerometer loggers | [159] |
GIS systems | [160] | |
Animal-mounted GPS sensors | [160,161,162,163] | |
Animal tracking | Animal-mounted GPS sensors | [160,161,162,163] |
Animal-mounted tri-axial accelerometer loggers | [164] | |
Sexual behaviour of rams | Animal mounted accelerometers | [165] |
Feeding behaviour | Camera-based analysis | [161] |
Microphones | [161] | |
Animal-mounted gyroscopes | [161] | |
Animal-mounted accelerometers | [161,166,167] | |
GPS sensors | [168] | |
Oestrus detection | Alpha-D detector | [169,170] |
Infrared thermography | [171,172] | |
Lameness detection | Infrared thermography | [173] |
Hoof weigh crate with four load platforms | [174] | |
Lambing detection | Animal-mounted temperature sensors | [175] |
Health status detection | Implanted sensors (heart rate and body temperature) | [176] |
Individual identification | Injectable transponders | [177,178] |
RFID sensors | [156,179,180] | |
Endoruminal bolus | [180,181] | |
Drones—image analysis | [182] | |
Age identification | Sound recorders analysis | [183] |
Flock monitoring | Drones—image analysis | [182,184] |
Weight monitoring | Automatic weigh-crates | [157] |
Standing/lying behaviour monitoring | Camera-based analysis | [185] |
Ultra-wide band real-time location | [185] | |
Animal mounted accelerometers | [186] in goats | |
Flock management | Virtual fence (i.e., animal-mounted collars embedded with electromagnetic transmitters and ground-installed receivers and sound speakers) | [187,188,189,190,191,192]; [193] in goats |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simitzis, P.; Tzanidakis, C.; Tzamaloukas, O.; Sossidou, E. Contribution of Precision Livestock Farming Systems to the Improvement of Welfare Status and Productivity of Dairy Animals. Dairy 2022, 3, 12-28. https://doi.org/10.3390/dairy3010002
Simitzis P, Tzanidakis C, Tzamaloukas O, Sossidou E. Contribution of Precision Livestock Farming Systems to the Improvement of Welfare Status and Productivity of Dairy Animals. Dairy. 2022; 3(1):12-28. https://doi.org/10.3390/dairy3010002
Chicago/Turabian StyleSimitzis, Panagiotis, Christos Tzanidakis, Ouranios Tzamaloukas, and Evangelia Sossidou. 2022. "Contribution of Precision Livestock Farming Systems to the Improvement of Welfare Status and Productivity of Dairy Animals" Dairy 3, no. 1: 12-28. https://doi.org/10.3390/dairy3010002
APA StyleSimitzis, P., Tzanidakis, C., Tzamaloukas, O., & Sossidou, E. (2022). Contribution of Precision Livestock Farming Systems to the Improvement of Welfare Status and Productivity of Dairy Animals. Dairy, 3(1), 12-28. https://doi.org/10.3390/dairy3010002